Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Genes Dev ; 29(18): 1955-68, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26338419

RESUMEN

MERIT40 is an essential component of the RAP80 ubiquitin recognition complex that targets BRCA1 to DNA damage sites. Although this complex is required for BRCA1 foci formation, its physiologic role in DNA repair has remained enigmatic, as has its relationship to canonical DNA repair mechanisms. Surprisingly, we found that Merit40(-/-) mice displayed marked hypersensitivity to DNA interstrand cross-links (ICLs) but not whole-body irradiation. MERIT40 was rapidly recruited to ICL lesions prior to FANCD2, and Merit40-null cells exhibited delayed ICL unhooking coupled with reduced end resection and homologous recombination at ICL damage. Interestingly, Merit40 mutation exacerbated ICL-induced chromosome instability in the context of concomitant Brca2 deficiency but not in conjunction with Fancd2 mutation. These findings implicate MERIT40 in the earliest stages of ICL repair and define specific functional interactions between RAP80 complex-dependent ubiquitin recognition and the Fanconi anemia (FA)-BRCA ICL repair network.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína BRCA2/metabolismo , Reparación del ADN/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Inestabilidad Cromosómica/genética , Daño del ADN , ADN Helicasas/metabolismo , Proteínas de Unión al ADN , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Chaperonas de Histonas , Humanos , Ratones , Ratones Endogámicos C57BL , Mutación , Transporte de Proteínas , Factores de Transcripción/metabolismo , Ubiquitinación
2.
Mol Cell ; 47(1): 61-75, 2012 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-22705371

RESUMEN

The Fanconi anemia (FA) protein network is necessary for repair of DNA interstrand crosslinks (ICLs), but its control mechanism remains unclear. Here we show that the network is regulated by a ubiquitin signaling cascade initiated by RNF8 and its partner, UBC13, and mediated by FAAP20, a component of the FA core complex. FAAP20 preferentially binds the ubiquitin product of RNF8-UBC13, and this ubiquitin-binding activity and RNF8-UBC13 are both required for recruitment of FAAP20 to ICLs. Both RNF8 and FAAP20 are required for recruitment of FA core complex and FANCD2 to ICLs, whereas RNF168 can modulate efficiency of the recruitment. RNF8 and FAAP20 are needed for efficient FANCD2 monoubiquitination, a key step of the FA network; RNF8 and the FA core complex work in the same pathway to promote cellular resistance to ICLs. Thus, the RNF8-FAAP20 ubiquitin cascade is critical for recruiting FA core complex to ICLs and for normal function of the FA network.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Ubiquitinación , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/química , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Lisina/química , Lisina/genética , Lisina/metabolismo , Microscopía Fluorescente , Datos de Secuencia Molecular , Mutación , Unión Proteica , Estructura Terciaria de Proteína , Interferencia de ARN , Homología de Secuencia de Aminoácido , Transducción de Señal , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
3.
J Biol Chem ; 288(18): 12426-36, 2013 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-23508956

RESUMEN

Recent evidence suggests a role for base excision repair (BER) proteins in the response to DNA interstrand crosslinks, which block replication and transcription, and lead to cell death and genetic instability. Employing fluorescently tagged fusion proteins and laser microirradiation coupled with confocal microscopy, we observed that the endonuclease VIII-like DNA glycosylase, NEIL1, accumulates at sites of oxidative DNA damage, as well as trioxsalen (psoralen)-induced DNA interstrand crosslinks, but not to angelicin monoadducts. While recruitment to the oxidative DNA lesions was abrogated by the anti-oxidant N-acetylcysteine, this treatment did not alter the accumulation of NEIL1 at sites of interstrand crosslinks, suggesting distinct recognition mechanisms. Consistent with this conclusion, recruitment of the NEIL1 population variants, G83D, C136R, and E181K, to oxidative DNA damage and psoralen-induced interstrand crosslinks was differentially affected by the mutation. NEIL1 recruitment to psoralen crosslinks was independent of the nucleotide excision repair recognition factor, XPC. Knockdown of NEIL1 in LN428 glioblastoma cells resulted in enhanced recruitment of XPC, a more rapid removal of digoxigenin-tagged psoralen adducts, and decreased cellular sensitivity to trioxsalen plus UVA, implying that NEIL1 and BER may interfere with normal cellular processing of interstrand crosslinks. While exhibiting no enzymatic activity, purified NEIL1 protein bound stably to psoralen interstrand crosslink-containing synthetic oligonucleotide substrates in vitro. Our results indicate that NEIL1 recognizes specifically and distinctly interstrand crosslinks in DNA, and can obstruct the efficient removal of lethal crosslink adducts.


Asunto(s)
Reactivos de Enlaces Cruzados/farmacología , Aductos de ADN/metabolismo , Daño del ADN , ADN Glicosilasas/metabolismo , Reparación del ADN/efectos de los fármacos , Ficusina/farmacología , Acetilcisteína/farmacología , Aductos de ADN/genética , ADN Glicosilasas/genética , Reparación del ADN/efectos de la radiación , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Depuradores de Radicales Libres/farmacología , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Oxidación-Reducción/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Unión Proteica/efectos de la radiación , Rayos Ultravioleta/efectos adversos
4.
J Am Chem Soc ; 136(37): 12884-7, 2014 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-25170678

RESUMEN

Arsenic is a widespread environmental contaminant. However, the exact molecular mechanisms underlying the carcinogenic effects of arsenic remain incompletely understood. Core histones can be ubiquitinated by RING finger E3 ubiquitin ligases, among which the RNF20-RNF40 heterodimer catalyzes the ubiquitination of histone H2B at lysine 120. This ubiquitination event is important for the formation of open and biochemically accessible chromatin fiber that is conducive for DNA repair. Herein, we found that arsenite could bind directly to the RING finger domains of RNF20 and RNF40 in vitro and in cells, and treatment with arsenite resulted in substantially impaired H2B ubiquitination in multiple cell lines. Exposure to arsenite also diminished the recruitment of BRCA1 and RAD51 to laser-induced DNA double-strand break (DSB) sites, compromised DNA DSB repair in human cells, and rendered cells sensitive toward a radiomimetic agent, neocarzinostatin. Together, the results from the present study revealed, for the first time, that arsenite may exert its carcinogenic effect by targeting cysteine residues in the RING finger domains of histone E3 ubiquitin ligase, thereby altering histone epigenetic mark and compromising DNA DSB repair. Our results also suggest arsenite as a general inhibitor for RING finger E3 ubiquitin ligases.


Asunto(s)
Arsenitos/metabolismo , Carcinógenos/metabolismo , Roturas del ADN de Doble Cadena/efectos de los fármacos , Dominios RING Finger , Ubiquitina-Proteína Ligasas/metabolismo , Línea Celular , Histonas/metabolismo , Humanos , Ubiquitina-Proteína Ligasas/química , Ubiquitinación/efectos de los fármacos
5.
J Biol Chem ; 285(29): 22003-16, 2010 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-20457603

RESUMEN

The murine KRAS promoter contains a G-rich nuclease hypersensitive element (GA-element) upstream of the transcription start site that is essential for transcription. Pulldown and chromatin immunoprecipitation assays demonstrate that this GA-element is bound by the Myc-associated zinc finger (MAZ) and poly(ADP-ribose) polymerase 1 (PARP-1) proteins. These proteins are crucial for transcription, because when they are knocked down by short hairpin RNA, transcription is down-regulated. This is also the case when the poly(ADP-ribosyl)ation activity of PARP-1 is inhibited by 3,4-dihydro-5-[4-(1-piperidinyl) butoxyl]-1(2H) isoquinolinone. We found that MAZ specifically binds to the duplex and quadruplex conformations of the GA-element, whereas PARP-1 shows specificity only for the G-quadruplex. On the basis of fluorescence resonance energy transfer melting and polymerase stop assays we saw that MAZ stabilizes the KRAS quadruplex. When the capacity of folding in the GA-element is abrogated by specific G --> T or G --> A point mutations, KRAS transcription is down-regulated. Conversely, guanidine-modified phthalocyanines, which specifically interact with and stabilize the KRAS G-quadruplex, push the promoter activity up to more than double. Collectively, our data support a transcription mechanism for murine KRAS that involves MAZ, PARP-1 and duplex-quadruplex conformational changes in the promoter GA-element.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , G-Cuádruplex , Guanina/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas p21(ras)/genética , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Inmunoprecipitación de Cromatina , Ensayo de Cambio de Movilidad Electroforética , Transferencia Resonante de Energía de Fluorescencia , Indoles/química , Isoindoles , Ligandos , Ratones , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , Células 3T3 NIH , Conformación de Ácido Nucleico , Unión Proteica , Estabilidad Proteica , Transcripción Genética
6.
Nucleic Acids Res ; 37(9): 2841-53, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19282454

RESUMEN

The promoter of the human KRAS proto-oncogene contains a structurally polymorphic nuclease hypersensitive element (NHE) whose purine strand forms a parallel G-quadruplex structure (called 32R). In a previous work we reported that quadruplex 32R is recognized by three nuclear proteins: PARP-1, Ku70 and hnRNP A1. In this study we describe the interaction of recombinant hnRNP A1 (A1) and its derivative Up1 with the KRAS G-quadruplex. Mobility-shift experiments show that A1/Up1 binds specifically, and also with a high affinity, to quadruplex 32R, while CD demonstrates that the proteins strongly reduce the intensity of the 260 nm-ellipticity-the hallmark for parallel G4-DNA-and unfold the G-quadruplex. Fluorescence resonance energy transfer melting experiments reveal that A1/Up1 completely abrogates the cooperative quadruplex-to-ssDNA transition that characterizes the KRAS quadruplex and facilitates the association between quadruplex 32R and its complementary polypyrimidine strand. When quadruplex 32R is stabilized by TMPyP4, A1/Up1 brings about only a partial destabilization of the G4-DNA structure. The possible role played by hnRNP A1 in the mechanism of KRAS transcription is discussed.


Asunto(s)
G-Cuádruplex , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas/genética , Proteínas ras/genética , Sitios de Unión , Dicroismo Circular , ADN/química , Ensayo de Cambio de Movilidad Electroforética , Transferencia Resonante de Energía de Fluorescencia , Ribonucleoproteína Nuclear Heterogénea A1 , Humanos , Desnaturalización de Ácido Nucleico , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas p21(ras) , Transcripción Genética
7.
J Vis Exp ; (173)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34398140

RESUMEN

Considerable insight is present into the cellular response to double strand breaks (DSBs), induced by nucleases, radiation, and other DNA breakers. In part, this reflects the availability of methods for the identification of break sites, and characterization of factors recruited to DSBs at those sequences. However, DSBs also appear as intermediates during the processing of DNA adducts formed by compounds that do not directly cause breaks, and do not react at specific sequence sites. Consequently, for most of these agents, technologies that permit the analysis of binding interactions with response factors and repair proteins are unknown. For example, DNA interstrand crosslinks (ICLs) can provoke breaks following replication fork encounters. Although formed by drugs widely used as cancer chemotherapeutics, there has been no methodology for monitoring their interactions with replication proteins. Here, we describe our strategy for following the cellular response to fork collisions with these challenging adducts. We linked a steroid antigen to psoralen, which forms photoactivation dependent ICLs in nuclei of living cells. The ICLs were visualized by immunofluorescence against the antigen tag. The tag can also be a partner in the Proximity Ligation Assay (PLA) which reports the close association of two antigens. The PLA was exploited to distinguish proteins that were closely associated with the tagged ICLs from those that were not. It was possible to define replisome proteins that were retained after encounters with ICLs and identify others that were lost. This approach is applicable to any structure or DNA adduct that can be detected immunologically.


Asunto(s)
Daño del ADN , Reparación del ADN , Reactivos de Enlaces Cruzados , Aductos de ADN , Replicación del ADN , Ficusina
8.
Nucleic Acids Res ; 36(11): 3765-80, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18490377

RESUMEN

The human KRAS proto-oncogene contains a critical nuclease hypersensitive element (NHE) upstream of the major transcription initiation site. In this article, we demonstrate by primer-extension experiments, PAGE, chemical footprinting, CD, UV and FRET experiments that the G-rich strand of NHE (32R) folds into intra-molecular G-quadruplex structures. Fluorescence data show that 32R in 100 mM KCl melts with a biphasic profile, showing the formation of two distinct G-quadruplexes with T(m) of approximately 55 degrees C (Q(1)) and approximately 72 degrees C (Q(2)). DMS-footprinting and CD suggest that Q(1) can be a parallel and Q(2) a mixed parallel/antiparallel G-quadruplex. When dsNHE (32R hybridized to its complementary) is incubated with a nuclear extract from Panc-1 cells, three DNA-protein complexes are observed by EMSA. The complex of slower mobility is competed by quadruplex 32R, but not by mutant oligonucleotides, which cannot form a quadruplex structure. Using paramagnetic beads coupled with 32R, we pulled down from the Panc-1 extract proteins with affinity for quadruplex 32R. One of these is the heterogeneous nuclear ribonucleoprotein A1, which was previously reported to unfold quadruplex DNA. Our study suggests a role of quadruplex DNA in KRAS transcription and provides the basis for the rationale design of molecular strategies to inhibit the expression of KRAS.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , G-Cuádruplex , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas/genética , Proteínas ras/genética , Sitios de Unión , Unión Competitiva , Línea Celular Tumoral , Dicroismo Circular , Huella de ADN , Desoxirribonucleasas , Humanos , Desnaturalización de Ácido Nucleico , Porfirinas/farmacología , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas p21(ras) , Espectrometría de Fluorescencia , Transcripción Genética/efectos de los fármacos
9.
Nucleic Acids Res ; 36(10): 3494-507, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18456705

RESUMEN

Sequence-specific targeting of genomic DNA by triplex-forming oligonucleotides (TFOs) is a promising strategy to modulate in vivo gene expression. Triplex formation involving G-rich oligonucleotides as third strand is, however, strongly inhibited by potassium-induced TFO self-association into G-quartet structures. We report here that G-rich TFOs with bulge insertions of (R)-1-O-[4-(1-pyrenylethynyl)-phenylmethyl] glycerol (called twisted intercalating nucleic acids, TINA) show a much lower tendency to aggregate in potassium than wild-type analogues do. We designed purine-motif TINA-TFOs for binding to a regulatory polypurine-polypyrimidine (pur/pyr) motif present in the promoter of the KRAS proto-oncogene. The binding of TINA-TFOs to the KRAS target has been analysed by electrophoresis mobility shift assays and DNase I footprinting experiments. We discovered that in the presence of potassium the wild-type TFOs did not bind to the KRAS target, differently from the TINA analogues, whose binding was observed up to 140 mM KCl. The designed TINA-TFOs were found to abrogate the formation of a DNA-protein complex at the pur/pyr site and to down-regulate the transcription of CAT driven by the murine KRAS promoter. Molecular modelling of the DNA/TINA-TFO triplexes are also reported. This study provides a new and promising approach to create TFOs to target in vivo the genome.


Asunto(s)
ADN/química , Regulación de la Expresión Génica , Oligonucleótidos/química , Animales , Unión Competitiva , Huella de ADN , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo , Glicerol/análogos & derivados , Glicerol/química , Guanina/química , Humanos , Ratones , Modelos Moleculares , Células 3T3 NIH , Potasio/química , Regiones Promotoras Genéticas , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas p21(ras) , Pirenos/química , Transcripción Genética , Transfección , Proteínas ras/genética
10.
Nat Struct Mol Biol ; 26(4): 267-274, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30936532

RESUMEN

All known eukaryotic topoisomerases are only able to relieve torsional stress in DNA. Nevertheless, it has been proposed that the introduction of positive DNA supercoiling is required for efficient sister-chromatid disjunction by Topoisomerase 2a during mitosis. Here we identify a eukaryotic enzymatic activity that introduces torsional stress into DNA. We show that the human Plk1-interacting checkpoint helicase (PICH) and Topoisomerase 3a proteins combine to create an extraordinarily high density of positive DNA supercoiling. This activity, which is analogous to that of a reverse-gyrase, is apparently driven by the ability of PICH to progressively extrude hypernegatively supercoiled DNA loops that are relaxed by Topoisomerase 3a. We propose that this positive supercoiling provides an optimal substrate for the rapid disjunction of sister centromeres by Topoisomerase 2a at the onset of anaphase in eukaryotic cells.


Asunto(s)
ADN Helicasas/metabolismo , ADN-Topoisomerasas de Tipo I/química , ADN-Topoisomerasas de Tipo I/metabolismo , ADN/química , ADN/metabolismo , Cromátides/metabolismo , ADN Helicasas/química , ADN-Topoisomerasas de Tipo II/metabolismo , ADN Superhelicoidal/química , ADN Superhelicoidal/metabolismo , Humanos
11.
DNA Repair (Amst) ; 71: 183-189, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30166246

RESUMEN

Repair pathways of covalent DNA damage are understood in considerable detail due to decades of brilliant biochemical studies by many investigators. An important feature of these experiments is the defined adduct location on oligonucleotide or plasmid substrates that are incubated with purified proteins or cell free extracts. With some exceptions, this certainty is lost when the inquiry shifts to the response of living mammalian cells to the same adducts in genomic DNA. This reflects the limitation of assays, such as those based on immunofluorescence, that are widely used to follow responding proteins in cells exposed to a DNA reactive compound. The lack of effective reagents for adduct detection means that the proximity between responding proteins and an adduct must be assumed. Since these assumptions can be incorrect, models based on in vitro systems may fail to account for observations made in vivo. Here we discuss the use of a detection tag to address the problem of lesion location, as illustrated by our recent work on replication dependent and independent responses to interstrand crosslinks.


Asunto(s)
Aductos de ADN/metabolismo , Reparación del ADN , Replicación del ADN , Inmunohistoquímica/métodos , Pruebas de Mutagenicidad/métodos , Reactivos de Enlaces Cruzados/farmacología , Reactivos de Enlaces Cruzados/toxicidad , ADN/efectos de los fármacos , Humanos
12.
Nat Struct Mol Biol ; 25(9): 868-876, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30177760

RESUMEN

Faithful chromosome segregation requires that the sister chromatids be disjoined completely. Defective disjunction can lead to the persistence of histone-free threads of DNA known as ultra-fine bridges (UFBs) that connect the separating sister DNA molecules during anaphase. UFBs arise at specific genomic loci and can only be visualized by detection of associated proteins such as PICH, BLM, topoisomerase IIIα, and RPA. However, it remains unknown how these proteins work together to promote UFB processing. We used a combination of ensemble biochemistry and new single-molecule assays to reconstitute key steps of UFB recognition and processing by these human proteins in vitro. We discovered characteristic patterns of hierarchical recruitment and coordinated biochemical activities that were specific for DNA structures modeling UFBs arising at either centromeres or common fragile sites. Our results describe a mechanistic model for how unresolved DNA replication structures are processed by DNA-structure-specific binding factors in mitosis to prevent pathological chromosome nondisjunction.


Asunto(s)
Anafase , ADN/química , ADN/genética , División Celular , Centrómero , Segregación Cromosómica , Inestabilidad Genómica , Humanos
13.
J Vis Exp ; (122)2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28448050

RESUMEN

The DNA Damage Response (DDR) has been extensively characterized in studies of double strand breaks (DSBs) induced by laser micro beam irradiation in live cells. The DDR to helix distorting covalent DNA modifications, including interstrand DNA crosslinks (ICLs), is not as well defined. We have studied the DDR stimulated by ICLs, localized by laser photoactivation of immunotagged psoralens, in the nuclei of live cells. In order to address fundamental questions about adduct distribution and replication fork encounters, we combined laser localization with two other technologies. DNA fibers are often used to display the progress of replication forks by immunofluorescence of nucleoside analogues incorporated during short pulses. Immunoquantum dots have been widely employed for single molecule imaging. In the new approach, DNA fibers from cells carrying laser localized ICLs are spread onto microscope slides. The tagged ICLs are displayed with immunoquantum dots and the inter-lesion distances determined. Replication fork collisions with ICLs can be visualized and different encounter patterns identified and quantitated.


Asunto(s)
Aductos de ADN/análisis , Furocumarinas/análisis , Rayos Láser , Imagen Individual de Molécula/métodos , Línea Celular , ADN/química , Aductos de ADN/química , Roturas del ADN de Doble Cadena , Daño del ADN , Técnica del Anticuerpo Fluorescente/métodos , Furocumarinas/química , Humanos , Microscopía Confocal , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Puntos Cuánticos , Imagen Individual de Molécula/instrumentación
14.
Front Genet ; 7: 84, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27242893

RESUMEN

DNA interstrand crosslinks (ICLs) block unwinding of the double helix, and have always been regarded as major challenges to replication and transcription. Compounds that form these lesions are very toxic and are frequently used in cancer chemotherapy. We have developed two strategies, both based on immunofluorescence (IF), for studying cellular responses to ICLs. The basis of each is psoralen, a photoactive (by long wave ultraviolet light, UVA) DNA crosslinking agent, to which we have linked an antigen tag. In the one approach, we have taken advantage of DNA fiber and immuno-quantum dot technologies for visualizing the encounter of replication forks with ICLs induced by exposure to UVA lamps. In the other, psoralen ICLs are introduced into nuclei in live cells in regions of interest defined by a UVA laser. The antigen tag can be displayed by conventional IF, as can the recruitment and accumulation of DNA damage response proteins to the laser localized ICLs. However, substantial difference between the technologies creates considerable uncertainty as to whether conclusions from one approach are applicable to those of the other. In this report, we have employed the fiber/quantum dot methodology to determine lesion density and spacing on individual DNA molecules carrying laser localized ICLs. We have performed the same measurements on DNA fibers with ICLs induced by exposure of psoralen to UVA lamps. Remarkably, we find little difference in the adduct distribution on fibers prepared from cells exposed to the different treatment protocols. Furthermore, there is considerable similarity in patterns of replication in the vicinity of the ICLs introduced by the two techniques.

15.
Cell Rep ; 10(12): 1957-66, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25818288

RESUMEN

We identified ubiquitin-like with PHD and RING finger domain 1 (UHRF1) as a binding factor for DNA interstrand crosslink (ICL) lesions through affinity purification of ICL-recognition activities. UHRF1 is recruited to DNA lesions in vivo and binds directly to ICL-containing DNA. UHRF1-deficient cells display increased sensitivity to a variety of DNA damages. We found that loss of UHRF1 led to retarded lesion processing and reduced recruitment of ICL repair nucleases to the site of DNA damage. UHRF1 interacts physically with both ERCC1 and MUS81, two nucleases involved in the repair of ICL lesions. Depletion of both UHRF1 and components of the Fanconi anemia (FA) pathway resulted in increased DNA damage sensitivity compared to defect of each mechanism alone. These results suggest that UHRF1 promotes recruitment of lesion-processing activities via its affinity to recognize DNA damage and functions as a nuclease recruitment scaffold in parallel to the FA pathway.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Daño del ADN/fisiología , Reparación del ADN/fisiología , ADN/metabolismo , Endonucleasas/metabolismo , Anemia de Fanconi/genética , Humanos , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas
16.
Mol Cell Biol ; 35(7): 1081-96, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25605334

RESUMEN

Insults to nuclear DNA induce multiple response pathways to mitigate the deleterious effects of damage and mediate effective DNA repair. G-protein-coupled receptor kinase-interacting protein 2 (GIT2) regulates receptor internalization, focal adhesion dynamics, cell migration, and responses to oxidative stress. Here we demonstrate that GIT2 coordinates the levels of proteins in the DNA damage response (DDR). Cellular sensitivity to irradiation-induced DNA damage was highly associated with GIT2 expression levels. GIT2 is phosphorylated by ATM kinase and forms complexes with multiple DDR-associated factors in response to DNA damage. The targeting of GIT2 to DNA double-strand breaks was rapid and, in part, dependent upon the presence of H2AX, ATM, and MRE11 but was independent of MDC1 and RNF8. GIT2 likely promotes DNA repair through multiple mechanisms, including stabilization of BRCA1 in repair complexes; upregulation of repair proteins, including HMGN1 and RFC1; and regulation of poly(ADP-ribose) polymerase activity. Furthermore, GIT2-knockout mice demonstrated a greater susceptibility to DNA damage than their wild-type littermates. These results suggest that GIT2 plays an important role in MRE11/ATM/H2AX-mediated DNA damage responses.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Reparación del ADN , Proteínas Activadoras de GTPasa/metabolismo , Fosfoproteínas/metabolismo , Animales , Proteínas de Ciclo Celular/análisis , Proteínas de Ciclo Celular/genética , Línea Celular , Línea Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas Activadoras de GTPasa/análisis , Proteínas Activadoras de GTPasa/genética , Péptidos y Proteínas de Señalización Intercelular , Ratones , Ratones Noqueados , Mutagénesis Sitio-Dirigida , Fosfoproteínas/análisis , Fosfoproteínas/genética
17.
Cancer Res ; 73(14): 4300-10, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23698467

RESUMEN

Fanconi anemia (FA) is a genome instability syndrome that has been associated with both cancer predisposition and bone marrow failure. FA proteins are involved in cellular response to replication stress in which they coordinate DNA repair with DNA replication and cell-cycle progression. One regulator of the replication stress response is the ATP-dependent DNA translocase FANCM, which we have shown to be hyperphosphorylated in response to various genotoxic agents. However, the significance of this phosphorylation remained unclear. Here, we show that genotoxic stress-induced FANCM phosphorylation is ATR-dependent and that this modification is highly significant for the cellular response to replication stress. We identified serine (S1045) residue of FANCM that is phosphorylated in response to genotoxic stress and this effect is ATR-dependent. We show that S1045 is required for FANCM functions including its role in FA pathway integrity, recruiting FANCM to the site of interstrand cross links, preventing the cells from entering mitosis prematurely, and efficient activation of the CHK1 and G2-M checkpoints. Overall, our data suggest that an ATR-FANCM feedback loop is present in the FA and replication stress response pathways and that it is required for both efficient ATR/CHK1 checkpoint activation and FANCM function.


Asunto(s)
ADN Helicasas/genética , ADN Helicasas/metabolismo , Serina/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , División Celular/fisiología , Línea Celular , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Replicación del ADN , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Fase G2/fisiología , Células HEK293 , Células HeLa , Humanos , Mitosis/genética , Mutación , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Serina/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA