RESUMEN
To examine the risk associated with bus riding and identify transmission chains, we investigated a COVID-19 outbreak in Germany in 2021 that involved index case-patients among bus-riding students. We used routine surveillance data, performed laboratory analyses, interviewed case-patients, and conducted a cohort study. We identified 191 case-patients, 65 (34%) of whom were elementary schoolchildren. A phylogenetically unique strain and epidemiologic analyses provided a link between air travelers and cases among bus company staff, schoolchildren, other bus passengers, and their respective household members. The attack rate among bus-riding children at 1 school was ≈4 times higher than among children not taking a bus to that school. The outbreak exemplifies how an airborne agent may be transmitted effectively through (multiple) short (<20 minutes) public transport journeys and may rapidly affect many persons.
Asunto(s)
COVID-19 , SARS-CoV-2 , Niño , Humanos , COVID-19/epidemiología , Estudios de Cohortes , Brotes de Enfermedades , Alemania/epidemiologíaRESUMEN
Kolmioviridae is a family for negative-sense RNA viruses with circular, viroid-like genomes of about 1.5-1.7 kb that are maintained in mammals, amphibians, birds, fish, insects and reptiles. Deltaviruses, for instance, can cause severe hepatitis in humans. Kolmiovirids encode delta antigen (DAg) and replicate using host-cell DNA-directed RNA polymerase II and ribozymes encoded in their genome and antigenome. They require evolutionary unrelated helper viruses to provide envelopes and incorporate helper virus proteins for infectious particle formation. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Kolmioviridae, which is available at ictv.global/report/kolmioviridae.
Asunto(s)
Virus Helper , Viroides , Animales , Humanos , Evolución Biológica , Virus ARN de Sentido Negativo , ARN Polimerasa II , MamíferosRESUMEN
Xinmoviridae is a family of viruses with negative-sense RNA genomes of 9-14 kilobases. Xinmovirids typically infect beneficial and pest insects but their host range has not yet been investigated systematically and hence may be broader. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family of Xinmoviridae, which is available at ictv.global/report/xinmoviridae.
Asunto(s)
Especificidad del Huésped , ARNRESUMEN
Members of the family Lispiviridae are viruses with negative-sense RNA genomes of 6.5-15.5 kb that have mainly been found in arthropods and nematodes. The genomes of lispivirids contain several open reading frames, typically encoding a nucleoprotein (N), a glycoprotein (G), and a large protein (L) including an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Lispiviridae, which is available at ictv.global/report/lispiviridae.
Asunto(s)
Artrópodos , Animales , Nucleoproteínas , Sistemas de Lectura Abierta , ARN , ARN Polimerasa Dependiente del ARNRESUMEN
Jingchuvirales is an order of negative-sense RNA viruses with genomes of 9.1-15.3 kb that have been associated with arachnids, barnacles, crustaceans, insects, fish and reptiles in Africa, Asia, Australia, Europe, North America and South America. The jingchuviral genome has two to four open reading frames (ORFs) that encode a glycoprotein (GP), a nucleoprotein (NP), a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain, and/or proteins of unknown function. Viruses in the order are only known from their genome sequences. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the order Jingchuvirales and on the families Aliusviridae, Chuviridae, Crepuscuviridae, Myriaviridae and Natareviridae, which are available at ictv.global/report/jingchuvirales, ictv.global/report/aliusviridae, ictv.global/report/chuviridae, ictv.global/report/crepuscuviridae, ictv.global/report/myriaviridae and ictv.global/report/natareviridae, respectively.
Asunto(s)
Genoma Viral , Virus ARN , Humanos , Animales , Virus ARN/genética , Filogenia , Nucleoproteínas/genética , Virus ARN de Sentido Negativo , Replicación Viral , ViriónRESUMEN
Hepatitis delta virus (HDV) is a human hepatitis-causing RNA virus, unrelated to any other taxonomic group of RNA viruses. Its occurrence as a satellite virus of hepatitis B virus (HBV) is a singular case in animal virology for which no consensus evolutionary explanation exists. Here we present a mammalian deltavirus that does not occur in humans, identified in the neotropical rodent species Proechimys semispinosus The rodent deltavirus is highly distinct, showing a common ancestor with a recently described deltavirus in snakes. Reverse genetics based on a tandem minus-strand complementary DNA genome copy under the control of a cytomegalovirus (CMV) promoter confirms autonomous genome replication in transfected cells, with initiation of replication from the upstream genome copy. In contrast to HDV, a large delta antigen is not expressed and the farnesylation motif critical for HBV interaction is absent from a genome region that might correspond to a hypothetical rodent large delta antigen. Correspondingly, there is no evidence for coinfection with an HBV-related hepadnavirus based on virus detection and serology in any deltavirus-positive animal. No other coinfecting viruses were detected by RNA sequencing studies of 120 wild-caught animals that could serve as a potential helper virus. The presence of virus in blood and pronounced detection in reproductively active males suggest horizontal transmission linked to competitive behavior. Our study establishes a nonhuman, mammalian deltavirus that occurs as a horizontally transmitted infection, is potentially cleared by immune response, is not focused in the liver, and possibly does not require helper virus coinfection.
Asunto(s)
Coinfección , Infecciones por Hepadnaviridae/veterinaria , Hepadnaviridae/fisiología , Hepatitis D/veterinaria , Virus de la Hepatitis Delta/fisiología , Enfermedades de los Roedores/virología , Roedores/virología , Animales , Línea Celular Tumoral , Genoma Viral , Genómica/métodos , Hepadnaviridae/clasificación , Virus de la Hepatitis Delta/clasificación , Humanos , FilogeniaRESUMEN
BACKGROUND: Comprehensive pathogen genomic surveillance represents a powerful tool to complement and advance precision vaccinology. The emergence of the Alpha variant in December 2020 and the resulting efforts to track the spread of this and other severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern led to an expansion of genomic sequencing activities in Germany. METHODS: At Robert Koch Institute (RKI), the German National Institute of Public Health, we established the Integrated Molecular Surveillance for SARS-CoV-2 (IMS-SC2) network to perform SARS-CoV-2 genomic surveillance at the national scale, SARS-CoV-2-positive samples from laboratories distributed across Germany regularly undergo whole-genome sequencing at RKI. RESULTS: We report analyses of 3623 SARS-CoV-2 genomes collected between December 2020 and December 2021, of which 3282 were randomly sampled. All variants of concern were identified in the sequenced sample set, at ratios equivalent to those in the 100-fold larger German GISAID sequence dataset from the same time period. Phylogenetic analysis confirmed variant assignments. Multiple mutations of concern emerged during the observation period. To model vaccine effectiveness in vitro, we employed authentic-virus neutralization assays, confirming that both the Beta and Zeta variants are capable of immune evasion. The IMS-SC2 sequence dataset facilitated an estimate of the SARS-CoV-2 incidence based on genetic evolution rates. Together with modeled vaccine efficacies, Delta-specific incidence estimation indicated that the German vaccination campaign contributed substantially to a deceleration of the nascent German Delta wave. CONCLUSIONS: SARS-CoV-2 molecular and genomic surveillance may inform public health policies including vaccination strategies and enable a proactive approach to controlling coronavirus disease 2019 spread as the virus evolves.
Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/prevención & control , Genoma Viral , Genómica , Humanos , Filogenia , SARS-CoV-2/genética , VacunologíaRESUMEN
Crimean-Congo haemorrhagic fever virus (CCHFV) is the medically most important member of the rapidly expanding bunyaviral family Nairoviridae. Traditionally, CCHFV isolates have been assigned to six distinct genotypes. Here, the International Committee on Taxonomy of Viruses (ICTV) Nairoviridae Study Group outlines the reasons for the recent decision to re-classify genogroup VI (aka Europe-2 or AP-92-like) as a distinct virus, Aigai virus (AIGV).
Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Genotipo , Virus de la Fiebre Hemorrágica de Crimea-Congo/genética , HumanosRESUMEN
Technical advances in metagenomics and metatranscriptomics have dramatically accelerated virus discovery in recent years. "Chuviruses" were first described in 2015 as obscure negative-sense RNA viruses of diverse arthropods. Although "chuviruses" first appeared to be members of the negarnaviricot order Mononegavirales in phylogenetic analyses using RNA-directed RNA polymerase sequences, further characterization revealed unusual gene orders in genomes that are nonsegmented, segmented, and/or possibly circular. Consequently, a separate order, Jingchuvirales, was established to include a monospecific family, Chuviridae. Recently, it has become apparent that jingchuvirals are broadly distributed and are therefore likely of ecological and economic importance. Here, we describe recent and ongoing efforts to create the necessary taxonomic framework to accommodate the expected flood of novel viruses belonging to the order.
Asunto(s)
Artrópodos , Virus ARN , Virus , Animales , Genoma Viral , Metagenómica , Filogenia , Virus ARN/genética , Virus/genéticaRESUMEN
Parasites impose different selection regimes on their hosts, which respond by increasing their resistance and/or tolerance. Parental challenge with parasites can enhance the immune response of their offspring, a phenomenon documented in invertebrates and termed transgenerational immune priming. We exposed two parental generations of the model organism Daphnia magna to the horizontally transmitted parasitic yeast Metschnikowia bicuspidata and recorded resistance- and tolerance-related traits in the offspring generation. We hypothesized that parentally primed offspring will increase either their resistance or their tolerance to the parasite. Our susceptibility assays revealed no impact of parental exposure on offspring resistance. Nonetheless, different fitness-related traits, which are indicative of tolerance, were altered. Specifically, maternal priming increased offspring production and decreased survival. Grandmaternal priming positively affected age at first reproduction and negatively affected brood size at first reproduction. Interestingly, both maternal and grandmaternal priming significantly reduced within-host-parasite proliferation. Nevertheless, Daphnia primed for two consecutive generations had no competitive advantage in comparison to unprimed ones, implying additive maternal and grandmaternal effects. Our findings do not support evidence of transgenerational immune priming from bacterial infections in the same host species, thus, emphasizing that transgenerational immune responses may not be consistent even within the same host species.
Asunto(s)
Parásitos , Animales , DaphniaRESUMEN
Nyamiviridae is a family of viruses in the order Mononegavirales, with unsegmented (except for members of the genus Tapwovirus), negative-sense RNA genomes of 10-13 kb. Nyamviruses have a genome organisation and content similar to that of other mononegaviruses. Nyamiviridae includes several genera that form monophyletic clades on phylogenetic analysis of the RNA polymerase. Nyamiviruses have been found associated with diverse invertebrates as well as land- and seabirds. Members of the genera Nyavirus and Socyvirus produce enveloped, spherical virions. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Nyamiviridae, which is available at ictv.global/report/nyamiviridae.
Asunto(s)
Mononegavirales/clasificación , Mononegavirales/aislamiento & purificación , Animales , Genoma Viral , Invertebrados/virología , Mononegavirales/genética , Filogenia , ARN Viral/genética , Proteínas Virales/genética , Virión/clasificación , Virión/genética , Virión/aislamiento & purificaciónRESUMEN
The spectrum of viruses in insects is important for subjects as diverse as public health, veterinary medicine, food production, and biodiversity conservation. The traditional interest in vector-borne diseases of humans and livestock has drawn the attention of virus studies to hematophagous insect species. However, these represent only a tiny fraction of the broad diversity of Hexapoda, the most speciose group of animals. Here, we systematically probed the diversity of negative strand RNA viruses in the largest and most representative collection of insect transcriptomes from samples representing all 34 extant orders of Hexapoda and 3 orders of Entognatha, as well as outgroups, altogether representing 1243 species. Based on profile hidden Markov models we detected 488 viral RNA-directed RNA polymerase (RdRp) sequences with similarity to negative strand RNA viruses. These were identified in members of 324 arthropod species. Selection for length, quality, and uniqueness left 234 sequences for analyses, showing similarity to genomes of viruses classified in Bunyavirales (n = 86), Articulavirales (n = 54), and several orders within Haploviricotina (n = 94). Coding-complete genomes or nearly-complete subgenomic assemblies were obtained in 61 cases. Based on phylogenetic topology and the availability of coding-complete genomes we estimate that at least 20 novel viral genera in seven families need to be defined, only two of them monospecific. Seven additional viral clades emerge when adding sequences from the present study to formerly monospecific lineages, potentially requiring up to seven additional genera. One long sequence may indicate a novel family. For segmented viruses, cophylogenies between genome segments were generally improved by the inclusion of viruses from the present study, suggesting that in silico misassembly of segmented genomes is rare or absent. Contrary to previous assessments, significant virus-host codivergence was identified in major phylogenetic lineages based on two different approaches of codivergence analysis in a hypotheses testing framework. In spite of these additions to the known spectrum of viruses in insects, we caution that basing taxonomic decisions on genome information alone is challenging due to technical uncertainties, such as the inability to prove integrity of complete genome assemblies of segmented viruses.
Asunto(s)
Insectos/virología , Infecciones por Virus ARN/virología , Virus ARN , AnimalesRESUMEN
The genus Phlebovirus (order Bunyavirales, family Phenuiviridae) comprises 57 viruses that are grouped into nine species-complexes. Sandfly-transmitted phleboviruses are found in Europe, Africa and the Americas and are responsible for febrile illness and infections of the nervous system in humans. The aim of this study was to assess the genetic diversity of sandfly-transmitted phleboviruses in connected and isolated forest habitats throughout the Panama Canal area in Central Panama. In total, we collected 13 807 sandflies comprising eight phlebotomine species. We detected several strains pertaining to five previously unknown viruses showing maximum pairwise identities of 45-78 % to the RNA-dependent RNA polymerase genes of phleboviruses. Entire coding regions were directly sequenced from infected sandflies as virus isolation in cell culture was not successful. The viruses were tentatively named La Gloria virus (LAGV), Mona Grita virus (MOGV), Peña Blanca virus (PEBV), Tico virus (TICV) and Tres Almendras virus (TRAV). Inferred phylogenies and p-distance-based analyses revealed that PEBV groups with the Bujaru phlebovirus species-complex, TRAV with the Candiru phlebovirus species-complex and MOGV belongs to the proposed Icoarci phlebovirus species-complex, whereas LAGV and TICV seem to be distant members of the Bujaru phlebovirus species-complex. No specific vector or habitat association was found for any of the five viruses. Relative abundance of sandflies was similar over habitat types. Our study shows that blood-feeding insects originating from remote and biodiverse habitats harbour multiple previously unknown phleboviruses. These viruses should be included in future surveillance studies to assess their geographic distribution and to elucidate if these viruses cause symptoms of disease in animals or humans.
Asunto(s)
Phlebovirus/genética , Phlebovirus/aislamiento & purificación , Psychodidae/virología , África , Animales , Europa (Continente) , Genoma Viral/genética , Humanos , Insectos Vectores/virología , Panamá , Fiebre por Flebótomos/virología , FilogeniaRESUMEN
Under global warming scenarios, rising temperatures can constitute heat stress to which species may respond differentially. Within a described species, knowledge on cryptic diversity is of further relevance, as different lineages/cryptic species may respond differentially to environmental change. The Brachionus calyciflorus species complex (Rotifera), which was recently described using integrative taxonomy, is an essential component of aquatic ecosystems. Here, we tested the hypothesis that these (formerly cryptic) species differ in their heat tolerance. We assigned 47 clones with nuclear ITS1 (nuITS1) and mitochondrial COI (mtCOI) markers to evolutionary lineages, now named B. calyciflorus sensu stricto (s.s.) and B. fernandoi We selected 15 representative clones and assessed their heat tolerance as a bi-dimensional phenotypic trait affected by both the intensity and duration of heat stress. We found two distinct groups, with B. calyciflorus s.s. clones having higher heat tolerance than the novel species B. fernandoi This apparent temperature specialization among former cryptic species underscores the necessity of a sound species delimitation and assignment, when organismal responses to environmental changes are investigated.
Asunto(s)
Evolución Biológica , Calor/efectos adversos , Rotíferos/fisiología , Animales , Filogenia , Especificidad de la Especie , Estrés FisiológicoRESUMEN
The identification of genomic variants has become a routine task in the age of genome sequencing. In particular, small genomic variants of a single or few nucleotides are routinely investigated for their impact on an organism's phenotype. Hence, the precise and robust detection of the variants' exact genomic locations and changes in nucleotide composition is vital in many biological applications. Although a plethora of methods exist for the many key steps of variant detection, thoroughly testing the detection process and evaluating its results is still a cumbersome procedure. In this work, we present a collection of easy-to-apply and highly modifiable workflows to facilitate the generation of synthetic test data, as well as to evaluate the accordance of a user-provided set of variants with the test data. The workflows are implemented in Nextflow and are open-source and freely available on Github under the GPL-3.0 license.
Asunto(s)
Variación Genética , Genómica , Programas Informáticos , Flujo de Trabajo , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Biología Computacional/métodosRESUMEN
Anthropogenic disturbance may increase the emergence of zoonoses. Especially generalists that cope with disturbance and live in close contact with humans and livestock may become reservoirs of zoonotic pathogens. Yet, whether anthropogenic disturbance modifies host-pathogen co-evolutionary relationships in generalists is unknown. We assessed pathogen diversity, neutral genome-wide diversity (SNPs) and adaptive MHC class II diversity in a rodent generalist inhabiting three lowland rainforest landscapes with varying anthropogenic disturbance, and determined which MHC alleles co-occurred more frequently with 13 gastrointestinal nematodes, blood trypanosomes, and four viruses. Pathogen-specific selection pressures varied between landscapes. Genome-wide diversity declined with the degree of disturbance, while MHC diversity was only reduced in the most disturbed landscape. Furthermore, pristine forest landscapes had more functional important MHC-pathogen associations when compared to disturbed forests. We show co-evolutionary links between host and pathogens impoverished in human-disturbed landscapes. This underscores that parasite-mediated selection might change even in generalist species following human disturbance which in turn may facilitate host switching and the emergence of zoonoses.
Asunto(s)
Nematodos , Roedores , Animales , Ratas , Roedores/genética , Inmunogenética , Bosques , ZoonosisRESUMEN
ABSTRACTGlobal and even national genome surveillance approaches do not provide the resolution necessary for rapid and accurate direct response by local public health authorities. Hence, a regional network of microbiological laboratories in collaboration with the health departments of all districts of the German federal state of Mecklenburg-Western Pomerania (M-V) was formed to investigate the regional molecular epidemiology of circulating SARS-CoV-2 lineages between 11/2020 and 03/2022. More than 4750 samples from all M-V counties were sequenced using Illumina and Nanopore technologies. Overall, 3493 (73.5%) sequences fulfilled quality criteria for time-resolved and/or spatially-resolved maximum likelihood phylogenic analyses and k-mean/ median clustering (KMC). We identified 116 different Pangolin virus lineages that can be assigned to 16 Nextstrain clades. The ten most frequently detected virus lineages belonged to B.1.1.7, AY.122, AY.43, BA.1, B.1.617.2, BA.1.1, AY.9.2, AY.4, P.1 and AY.126. Time-resolved phylogenetic analyses showed the occurrence of virus clades as determined worldwide, but with a substantial delay of one to two months. Further spatio-temporal phylogenetic analyses revealed a regional outbreak of a Gamma variant limited to western M-V counties. Finally, KMC elucidated a successive introduction of the various virus lineages into M-V, possibly triggered by vacation periods with increased (inter-) national travel activities. The COVID-19 pandemic in M-V was shaped by a combination of several SARS-CoV-2 introductions, lockdown measures, restrictive quarantine of patients and the lineage specific replication rate. Complementing global and national surveillance, regional surveillance adds value by providing a higher level of surveillance resolution tailored to local health authorities.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias , Filogenia , COVID-19/epidemiología , Control de Enfermedades Transmisibles , GenómicaRESUMEN
Viruses are the cause of a considerable burden to human, animal and plant health, while on the other hand playing an important role in regulating entire ecosystems. The power of new sequencing technologies combined with new tools for processing "Big Data" offers unprecedented opportunities to answer fundamental questions in virology. Virologists have an urgent need for virus-specific bioinformatics tools. These developments have led to the formation of the European Virus Bioinformatics Center, a network of experts in virology and bioinformatics who are joining forces to enable extensive exchange and collaboration between these research areas. The EVBC strives to provide talented researchers with a supportive environment free of gender bias, but the gender gap in science, especially in math-intensive fields such as computer science, persists. To bring more talented women into research and keep them there, we need to highlight role models to spark their interest, and we need to ensure that female scientists are not kept at lower levels but are given the opportunity to lead the field. Here we showcase the work of the EVBC and highlight the achievements of some outstanding women experts in virology and viral bioinformatics.
Asunto(s)
Biología Computacional , Investigadores , Virus , Europa (Continente) , Femenino , Humanos , Investigadores/estadística & datos numéricos , Virus/genéticaRESUMEN
Populations adapt to novel environmental conditions by genetic changes or phenotypic plasticity. Plastic responses are generally faster and can buffer fitness losses under variable conditions. Plasticity is typically modeled as random noise and linear reaction norms that assume simple one-to-one genotype-phenotype maps and no limits to the phenotypic response. Most studies on plasticity have focused on its effect on population viability. However, it is not clear, whether the advantage of plasticity depends solely on environmental fluctuations or also on the genetic and demographic properties (life histories) of populations. Here we present an individual-based model and study the relative importance of adaptive and nonadaptive plasticity for populations of sexual species with different life histories experiencing directional stochastic climate change. Environmental fluctuations were simulated using differentially autocorrelated climatic stochasticity or noise color, and scenarios of directional climate change. Nonadaptive plasticity was simulated as a random environmental effect on trait development, while adaptive plasticity as a linear, saturating, or sinusoidal reaction norm. The last two imposed limits to the plastic response and emphasized flexible interactions of the genotype with the environment. Interestingly, this assumption led to (a) smaller phenotypic than genotypic variance in the population (many-to-one genotype-phenotype map) and the coexistence of polymorphisms, and (b) the maintenance of higher genetic variation-compared to linear reaction norms and genetic determinism-even when the population was exposed to a constant environment for several generations. Limits to plasticity led to genetic accommodation, when costs were negligible, and to the appearance of cryptic variation when limits were exceeded. We found that adaptive plasticity promoted population persistence under red environmental noise and was particularly important for life histories with low fecundity. Populations producing more offspring could cope with environmental fluctuations solely by genetic changes or random plasticity, unless environmental change was too fast.
RESUMEN
Insects are the most diversified and species-rich group of animals and harbor an immense diversity of viruses. Several taxa in the flavi-like superfamily, such as the genus Flavivirus, are associated with insects; however, systematic studies on insect virus genetic diversity are lacking, limiting our understanding of the evolution of the flavi-like superfamily. Here, we examined the diversity of flavi-like viruses within the most complete and up-to-date insect transcriptome collection comprising 1,243 insect species by employing a Flaviviridae RdRp profile hidden Markov model search. We identified seventy-six viral sequences in sixty-one species belonging to seventeen insect, one entognathan, and one arachnidan orders. Phylogenetic analyses revealed that twenty-seven sequences fell within the Flaviviridae phylogeny but did not group with established genera. Despite the large diversity of insect hosts studied, we only detected one virus in a blood-feeding insect, which branched within the genus Flavivirus, indicating that this genus likely diversified only in hematophagous arthropods. Nine new jingmenviruses with novel host associations were identified. One of the jingmenviruses established a deep rooting lineage additional to the insect- and tick-associated clades. Segment co-segregation phylogenies support the separation of tick- and insect-associated groups within jingmenviruses, with evidence for segment reassortment. In addition, fourteen viruses grouped with unclassified flaviviruses encompassing genome length of up to 20 kb. Species-specific clades for Hymenopteran- and Orthopteran-associated viruses were identified. Forty-nine viruses populated three highly diversified clades in distant relationship to Tombusviridae, a plant-infecting virus family, suggesting the detection of three previously unknown insect-associated families that contributed to tombusvirus evolution.