Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Pediatr Res ; 94(2): 495-502, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36694027

RESUMEN

BACKGROUND: Neonatal epileptic seizures cause postictal dysregulation of cerebral blood flow. Hydrogen sulfide (H2S), a mediator with vasodilator and antioxidant properties, is produced in the brain by astrocyte cystathionine ß-synthase (CBS). This study investigated whether H2S improves the cerebral vascular outcome of seizures. METHODS: Epileptic seizures were induced in newborn pigs using bicuculline. The effects of the CBS inhibitor aminooxyacetate (AOA) and the H2S donor NaHS on cerebral vascular outcome of seizures were examined in live pigs, cerebral endothelial cells, and cortical astrocytes. RESULTS: Brain H2S was elevated during seizures. AOA blocked H2S and reduced functional hyperemia in the epileptic brain. The endothelium- and astrocyte-dependent vasodilation of pial arterioles was impaired 48 h after seizures suggesting cerebral vascular dysfunction. Systemic NaHS elevated brain H2S and blocked reactive oxygen species in the epileptic brain and in primary endothelial cells and astrocytes during inflammatory and excitotoxic conditions. Postictal cerebrovascular dysfunction was exaggerated in H2S-inhibited pigs and minimized in NaHS-treated pigs. CONCLUSIONS: H2S elevation in the epileptic brain via activation of CBS contributes to functional hyperemia and exhibits cerebroprotective properties. The H2S donor NaHS enhances brain antioxidant defense and provides a therapeutic approach for preventing adverse cerebral vascular outcome of neonatal epileptic seizures. IMPACT: Epileptic seizures in neonates lead to prolonged postictal cerebral vascular dysregulation. The role of hydrogen sulfide (H2S), a mediator with vasodilator and antioxidant properties, in the epileptic brain has been explored. Astrocytes are major sites of enzymatic H2S production in the epileptic brain. Postictal cerebral vascular dysfunction is exaggerated when astrocyte H2S production is pharmacologically inhibited during seizures. Postictal cerebral vascular dysfunction is minimized when the brain H2S is elevated by systemic administration of NaHS during seizures. NaHS provides a therapeutic approach for improving cerebrovascular outcome of epileptic seizures via a mechanism that involves the antioxidant potential of H2S.


Asunto(s)
Epilepsia , Sulfuro de Hidrógeno , Hiperemia , Animales , Porcinos , Animales Recién Nacidos , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Células Endoteliales , Encéfalo , Vasodilatadores/farmacología , Convulsiones/tratamiento farmacológico , Epilepsia/tratamiento farmacológico
2.
Pediatr Res ; 92(3): 729-736, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34862458

RESUMEN

BACKGROUND: Sodium bicarbonate (NaHCO3) is no longer recommended by the Neonatal Resuscitation Program (NRP), but is still being used by some neonatologists. The effects of NaHCO3 on cerebral hemodynamics are unclear. Therefore, we investigated the effects of NaHCO3 on cerebral blood flow (CBF) and cerebrovascular function using a newborn piglet model. METHODS: Newborn pigs were anesthetized, intubated, and ventilated. Cranial windows were implanted to evaluate changes in pial arteriolar diameters (PADs) as a surrogate for CBF during a 4-h intravenous infusion of 3% NaHCO3. Cerebrovascular reactivity to vasodilators and vasoconstrictors was investigated during vehicle control and during NaHCO3 infusion. RESULTS: NaHCO3 infusion caused significant and progressive pial arteriolar vasoconstrictions. During NaHCO3 infusion, cerebrovascular reactivity was preserved. Adding vasodilators decreased cerebral vasoconstriction, while adding vasoconstrictors exaggerated cerebral vasoconstriction. CONCLUSIONS: Intravenous infusion of NaHCO3 over 4 h caused progressive vasoconstriction of pial arterioles. Cerebrovascular function evaluated by the responses of pial arterioles to physiologically relevant vasoconstrictors and vasodilators was preserved during NaHCO3 infusion. A notable additional reduction of PADs was observed during NaHCO3 infusion in the presence of vasoconstrictors. Extrapolating our findings to human neonates should alarm the clinicians that using NaHCO3 in neonates may cause cerebral hypoperfusion. IMPACT: Cerebral vasoconstriction occurs during slow infusion of 3% diluted NaHCO3. Cerebral vasoconstriction is exaggerated when another vasoconstrictor is added during NaHCO3 infusion. Cerebrovascular function is preserved during NaHCO3 infusion. Clinicians should be aware of the risk of cerebral hypoperfusion with NaHCO3 infusion in vulnerable neonates.


Asunto(s)
Resucitación , Bicarbonato de Sodio , Animales , Animales Recién Nacidos , Circulación Cerebrovascular , Humanos , Recién Nacido , Bicarbonato de Sodio/farmacología , Porcinos , Vasoconstricción , Vasoconstrictores/farmacología , Vasodilatadores/farmacología
3.
Am J Physiol Heart Circ Physiol ; 315(4): H978-H988, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30028198

RESUMEN

Neonatal asphyxia leads to cerebrovascular disease and neurological complications via a mechanism that may involve oxidative stress. Carbon monoxide (CO) is an antioxidant messenger produced via a heme oxygenase (HO)-catalyzed reaction. Cortical astrocytes are the major cells in the brain that express constitutive HO-2 isoform. We tested the hypothesis that CO, produced by astrocytes, has cerebroprotective properties during neonatal asphyxia. We developed a survival model of prolonged asphyxia in newborn pigs that combines insults of severe hypoxia, hypercapnia, and acidosis while avoiding extreme hypotension and cerebral blood flow reduction. During the 60-min asphyxia, CO production by brain and astrocytes was continuously elevated. Excessive formation of reactive oxygen species during asphyxia/reventilation was potentiated by the HO inhibitor tin protoporphyrin, suggesting that endogenous CO has antioxidant effects. Cerebral vascular outcomes tested 24 and 48 h after asphyxia demonstrated the sustained impairment of cerebral vascular responses to astrocyte- and endothelium-specific vasodilators. Postasphyxia cerebral vascular dysfunction was aggravated in newborn pigs pretreated with tin protoporphyrin to inhibit brain HO/CO. The CO donor CO-releasing molecule-A1 (CORM-A1) reduced brain oxidative stress during asphyxia/reventilation and prevented postasphyxia cerebrovascular dysfunction. The antioxidant and antiapoptotic effects of HO/CO and CORM-A1 were confirmed in primary cultures of astrocytes from the neonatal pig brain exposed to glutamate excitotoxicity. Overall, prolonged neonatal asphyxia leads to neurovascular injury via an oxidative stress-mediated mechanism that is counteracted by an astrocyte-based constitutive antioxidant HO/CO system. We propose that gaseous CO or CO donors can be used as novel approaches for prevention of neonatal brain injury caused by prolonged asphyxia. NEW & NOTEWORTHY Asphyxia in newborn infants may lead to lifelong neurological disabilities. Using the model of prolonged asphyxia in newborn piglets, we propose novel antioxidant therapy based on systemic administration of low doses of a carbon monoxide donor that prevent loss of cerebral blood flow regulation and may improve the neurological outcome of asphyxia.


Asunto(s)
Arteriolas/efectos de los fármacos , Asfixia Neonatal/tratamiento farmacológico , Astrocitos/efectos de los fármacos , Boranos/farmacología , Dióxido de Carbono/metabolismo , Carbonatos/farmacología , Circulación Cerebrovascular/efectos de los fármacos , Trastornos Cerebrovasculares/prevención & control , Fármacos Neuroprotectores/farmacología , Piamadre/irrigación sanguínea , Animales , Animales Recién Nacidos , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Arteriolas/metabolismo , Arteriolas/fisiopatología , Asfixia Neonatal/complicaciones , Asfixia Neonatal/metabolismo , Asfixia Neonatal/fisiopatología , Astrocitos/metabolismo , Astrocitos/patología , Velocidad del Flujo Sanguíneo , Células Cultivadas , Trastornos Cerebrovasculares/etiología , Trastornos Cerebrovasculares/metabolismo , Trastornos Cerebrovasculares/fisiopatología , Modelos Animales de Enfermedad , Femenino , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo-Oxigenasa 1/metabolismo , Masculino , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Sus scrofa , Factores de Tiempo , Vasodilatación/efectos de los fármacos
4.
Am J Physiol Heart Circ Physiol ; 315(6): H1759-H1764, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30265150

RESUMEN

H2S is an endogenous gasotransmitter that increases cerebral blood flow. In the cerebral vascular endothelium, H2S is produced by cystathionine δ-lyase (CSE). Endothelin-1 (ET-1) has constrictor and dilator influences on the cerebral circulation. The mechanism of the vasodilation caused by ET-1 may involve endothelium-derived factors. We hypothesize that ET-1-elicited dilation of pial arterioles requires an elevation of H2S production in the cerebral vascular endothelium. We investigated the effects of ET-1 on CSE-catalyzed brain H2S production and pial arteriolar diameter using cranial windows in newborn pigs in vivo. H2S was measured in periarachnoid cerebrospinal fluid. ET-1 (10-12-10-8 M) caused an elevation of H2S that was reduced by the CSE inhibitors propargylglycine (PPG) and ß-cyano-l-alanine (BCA). Low doses of ET-1 (10-12-10-11 M) produced vasodilation of pial arterioles that was blocked PPG and BCA, suggesting the importance of H2S influences. The vasodilator effects of H2S may require activation of smooth muscle cell membrane ATP-sensitive K+ (KATP) channels and large-conductance Ca2+-activated K+ (BK) channels. The KATP inhibitor glibenclamide and the BK inhibitor paxilline blocked CSE/H2S-dependent dilation of pial arterioles to ET-1. In contrast, the vasoconstrictor response of pial arterioles to 10-8 M ET-1 was not modulated by PPG, BCA, glibenclamide, or paxilline and, therefore, was independent of CSE/H2S influences. Pial arteriolar constriction response to higher levels of ET-1 was independent of CSE/H2S and KATP/BKCa channel activation. These data suggest that H2S is an endothelium-derived factor that mediates the vasodilator effects of ET-1 in the cerebral circulation via a mechanism that involves activation of KATP and BK channels in vascular smooth muscle. NEW & NOTEWORTHY Disorders of the cerebral circulation in newborn infants may lead to lifelong neurological disabilities. We report that vasoactive peptide endothelin-1 exhibits vasodilator properties in the neonatal cerebral circulation by stimulating production of H2S, an endothelium-derived messenger with vasodilator properties. The ability of endothelin-1 to stimulate brain production of H2S may counteract the reduction in cerebral blood flow and prevent the cerebral vascular dysfunction caused by stroke, asphyxia, cerebral hypoxia, ischemia, and vasospasm.


Asunto(s)
Encéfalo/irrigación sanguínea , Circulación Cerebrovascular , Endotelina-1/farmacología , Sulfitos/líquido cefalorraquídeo , Vasodilatación , Alanina/análogos & derivados , Alanina/farmacología , Alquinos/farmacología , Animales , Arteriolas/efectos de los fármacos , Arteriolas/metabolismo , Arteriolas/fisiología , Endotelio Vascular/metabolismo , Inhibidores Enzimáticos/farmacología , Glicina/análogos & derivados , Glicina/farmacología , Canales KATP/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Músculo Liso Vascular/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Porcinos
5.
Pediatr Res ; 84(2): 290-295, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29907849

RESUMEN

BACKGROUND: Hypercapnia causes cerebral vasodilation and increased cerebral blood flow (CBF). During prolonged hypercapnia it is unknown whether cerebral vasodilation persists and whether cerebrovascular function is preserved. We investigated the effects of prolonged severe hypercapnia on pial arteriolar diameters (PAD) and cerebrovascular reactivity to vasodilators and vasoconstrictors. METHODS: Piglets were anesthetized, intubated and ventilated. Closed cranial windows were implanted to measure PAD. Changes in PAD were documented during hypercapnia (PaCO2 75-80 mm Hg). Cerebrovascular reactivity was documented during normocapnia and at 30, 60, and 120 min of hypercapnia. RESULTS: Cerebral vasodilation to hypercapnia was sustained over 120 min. Cerebrovascular responses to vasodilators and vasoconstrictors were preserved during hypercapnia. During hypercapnia, vasodilatory responses to second vasodilators were similar to normocapnia, while exposure to vasoconstrictors caused significant vasoconstriction. CONCLUSIONS: Prolonged severe hypercapnia causes sustained vasodilation of pial arteriolar diameters indicative of hyperperfusion. During hypercapnia, cerebral vascular responses to vasodilators and vasoconstrictors were preserved, suggesting that cerebral vascular function remained intact. Of note, cerebral vessels during hypercapnia were capable of further dilation when exposed to additional cerebral vasodilators and, significant vasoconstriction when exposed to vasoconstrictors. Extrapolating these findings to infants, we suggest that severe hypercapnia should be avoided, because it could cause/increase cerebrovascular injury.


Asunto(s)
Arteriolas/fisiopatología , Circulación Cerebrovascular , Hipercapnia/fisiopatología , Vasodilatación/efectos de los fármacos , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacología , Animales , Animales Recién Nacidos , Biomarcadores , Dióxido de Carbono/sangre , Modelos Animales de Enfermedad , Endotelinas/farmacología , Femenino , Ácido Glutámico/farmacología , Isoproterenol/farmacología , Masculino , Nitroprusiato/farmacología , Piamadre/irrigación sanguínea , Porcinos , Vasoconstricción/efectos de los fármacos , Vasoconstrictores/farmacología , Vasodilatadores/farmacología
6.
Pediatr Res ; 82(5): 881-887, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28665933

RESUMEN

BackgroundThe potential contribution of sex-related variables to cerebrovascular functions in neonates remains elusive. Newborn piglets provide a translationally relevant model for studying the effects of seizures in the neonatal brain. The present study investigated whether sex differences contribute to cerebrovascular functions in healthy and epileptic newborn pigs.MethodsEpileptic seizures were induced in female and male newborn pigs by bicuculline. An antioxidant drug, the carbon monoxide-releasing molecule CORM-A1, was administered enterally before or during seizures. The responses of pial arterioles to endothelium-, astrocyte-, and vascular smooth muscle-dependent vasodilators were tested in intact and 48-h postictal piglets using the cranial window technique.ResultsIn intact newborn pigs, we did not observe any sex-related differences in cerebrovascular functions. In the postictal male and female newborn pigs, a marked reduction in responses of pial arterioles to endothelium- and astrocyte-dependent vasodilators was detected. CORM-A1, administered before or during seizures, greatly improved the outcome of seizures on cerebrovascular functions in both male and female piglets.ConclusionWe found no evidence of sex-related differences in cerebral vasodilator functions in control and epileptic newborn pigs. In both male and female newborns, epileptic seizures lead to prolonged cerebral vascular dysfunction that is effectively prevented by CORM-A1 therapy.


Asunto(s)
Antioxidantes/farmacología , Boranos/farmacología , Carbonatos/farmacología , Arterias Cerebrales/efectos de los fármacos , Arterias Cerebrales/fisiopatología , Trastornos Cerebrovasculares/prevención & control , Piamadre/irrigación sanguínea , Convulsiones/tratamiento farmacológico , Vasodilatación/efectos de los fármacos , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Bicuculina , Arterias Cerebrales/metabolismo , Trastornos Cerebrovasculares/etiología , Trastornos Cerebrovasculares/fisiopatología , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Femenino , Humanos , Masculino , Convulsiones/inducido químicamente , Convulsiones/metabolismo , Convulsiones/fisiopatología , Factores Sexuales , Sus scrofa , Factores de Tiempo , Vasodilatadores/farmacología
7.
Am J Physiol Heart Circ Physiol ; 311(5): H1202-H1213, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27591217

RESUMEN

Epileptic seizures in neonates cause cerebrovascular injury and impairment of cerebral blood flow (CBF) regulation. In the bicuculline model of seizures in newborn pigs, we tested the hypothesis that selective head cooling prevents deleterious effects of seizures on cerebral vascular functions. Preventive or therapeutic ictal head cooling was achieved by placing two head ice packs during the preictal and/or ictal states, respectively, for the ∼2-h period of seizures. Head cooling lowered the brain and core temperatures to 25.6 ± 0.3 and 33.5 ± 0.1°C, respectively. Head cooling had no anticonvulsant effects, as it did not affect the bicuculline-evoked electroencephalogram parameters, including amplitude, duration, spectral power, and spike frequency distribution. Acute and long-term cerebral vascular effects of seizures in the normothermic and head-cooled groups were tested during the immediate (2-4 h) and delayed (48 h) postictal periods. Seizure-induced cerebral vascular injury during the immediate postictal period was detected as terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive staining of cerebral arterioles and a surge of brain-derived circulating endothelial cells in peripheral blood in the normothermic group, but not in the head-cooled groups. During the delayed postictal period, endothelium-dependent cerebral vasodilator responses were greatly reduced in the normothermic group, indicating impaired CBF regulation. Preventive or therapeutic ictal head cooling mitigated the endothelial injury and greatly reduced loss of postictal cerebral vasodilator functions. Overall, head cooling during seizures is a clinically relevant approach to protecting the neonatal brain by preventing cerebrovascular injury and the loss of the endothelium-dependent control of CBF without reducing epileptiform activity.


Asunto(s)
Arteriolas/fisiopatología , Arterias Cerebrales/fisiopatología , Circulación Cerebrovascular , Trastornos Cerebrovasculares/fisiopatología , Cabeza , Hipotermia Inducida/métodos , Convulsiones/fisiopatología , Vasodilatación/fisiología , Animales , Animales Recién Nacidos , Bicuculina/toxicidad , Trastornos Cerebrovasculares/etiología , Trastornos Cerebrovasculares/prevención & control , Convulsivantes/toxicidad , Electroencefalografía , Células Endoteliales/citología , Femenino , Etiquetado Corte-Fin in Situ , Masculino , Convulsiones/inducido químicamente , Convulsiones/complicaciones , Porcinos
8.
Am J Physiol Cell Physiol ; 304(11): C1105-15, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23576575

RESUMEN

In cerebral microvascular endothelial cells (CMVEC) of newborn pigs, glutamate at excitotoxic concentrations (mM) causes apoptosis mediated by reactive oxygen species (ROS). Carbon monoxide (CO) produced by CMVEC or delivered by a CO-releasing molecule, CORM-A1, has antioxidant properties. We tested the hypothesis that CORM-A1 prevents cerebrovascular endothelial barrier dysfunction caused by glutamate excitotoxicity. First, we identified the glutamate receptors (GluRs) and enzymatic sources of ROS involved in the mechanism of endothelial apoptosis. In glutamate-exposed CMVEC, ROS formation and apoptosis were blocked by rotenone, 2-thenoyltrifluoroacetone (TTFA), and antimycin, indicating that mitochondrial complexes I, II, and III are the major sources of oxidative stress. Agonists of ionotropic GluRs (iGluRs) N-methyl-D-aspartate (NMDA), cis-ACPD, AMPA, and kainate increased ROS production and apoptosis, whereas iGluR antagonists exhibited antiapoptotic properties, suggesting that iGluRs mediate glutamate-induced endothelial apoptosis. The functional consequences of endothelial injury were tested in the model of blood-brain barrier (BBB) composed of CMVEC monolayer on semipermeable membranes. Glutamate and iGluR agonists reduced transendothelial electrical resistance and increased endothelial paracellular permeability to 3-kDa dextran. CORM-A1 exhibited potent antioxidant and antiapoptotic properties in CMVEC and completely prevented BBB dysfunction caused by glutamate and iGluR agonists. Overall, the endothelial component of the BBB is a cellular target for excitotoxic glutamate that, via a mechanism involving a iGluR-mediated activation of mitochondrial ROS production and apoptosis, leads to BBB opening that may be prevented by the antioxidant and antiapoptotic actions of CORMs. Antioxidant CORMs therapy may help preserve BBB functional integrity in neonatal cerebrovascular disease.


Asunto(s)
Apoptosis/fisiología , Barrera Hematoencefálica/metabolismo , Boranos/metabolismo , Carbonatos/metabolismo , Células Endoteliales/metabolismo , Estrés Oxidativo/fisiología , Receptores Ionotrópicos de Glutamato/metabolismo , Animales , Barrera Hematoencefálica/patología , Encéfalo/metabolismo , Encéfalo/patología , Fragmentación del ADN , Células Endoteliales/patología , Aminoácidos Excitadores/metabolismo , Aminoácidos Excitadores/toxicidad , Femenino , Ácido Glutámico/metabolismo , Ácido Glutámico/toxicidad , Masculino , Especies Reactivas de Oxígeno/metabolismo , Porcinos
9.
Am J Physiol Heart Circ Physiol ; 302(11): H2257-66, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22467311

RESUMEN

In newborn pigs, vasodilation of pial arterioles in response to glutamate is mediated via carbon monoxide (CO), a gaseous messenger endogenously produced from heme degradation by a heme oxygenase (HO)-catalyzed reaction. We addressed the hypothesis that ionotropic glutamate receptors (iGluRs), including N-methyl-D-aspartic acid (NMDA)- and 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid (AMPA)/kainate-type receptors, expressed in cortical astrocytes mediate glutamate-induced astrocyte HO activation that leads to cerebral vasodilation. Acute vasoactive effects of topical iGluR agonists were determined by intravital microscopy using closed cranial windows in anesthetized newborn pigs. iGluR agonists, including NMDA, (±)1-aminocyclopentane-cis-1,3-dicarboxylic acid (cis-ACPD), AMPA, and kainate, produced pial arteriolar dilation. Topical L-2-aminoadipic acid, a gliotoxin that selectively disrupts glia limitans, reduced vasodilation caused by iGluR agonists, but not by hypercapnia, bradykinin, or sodium nitroprusside. In freshly isolated and cultured cortical astrocytes constitutively expressing HO-2, iGluR agonists NMDA, cis-ACPD, AMPA, and kainate rapidly increased CO production two- to threefold. Astrocytes overexpressing inducible HO-1 had high baseline CO but were less sensitive to glutamate stimulation of CO production when compared with HO-2-expressing astrocytes. Glutamate-induced astrocyte HO-2-mediated CO production was inhibited by either the NMDA receptor antagonist (R)-3C4HPG or the AMPA/kainate receptor antagonist DNQX. Accordingly, either antagonist abolished pial arteriolar dilation in response to glutamate, NMDA, and AMPA, indicating functional interaction among various subtypes of astrocytic iGluRs in response to glutamate stimulation. Overall, these data indicate that the astrocyte component of the neurovascular unit is responsible for the vasodilation response of pial arterioles to topically applied glutamate via iGluRs that are functionally linked to activation of constitutive HO in newborn piglets.


Asunto(s)
Arteriolas/efectos de los fármacos , Astrocitos/metabolismo , Monóxido de Carbono/metabolismo , Circulación Cerebrovascular/fisiología , Glutamatos/farmacología , Receptores de Glutamato/metabolismo , Vasodilatación/efectos de los fármacos , Animales , Animales Recién Nacidos , Arteriolas/fisiología , Astrocitos/citología , Astrocitos/efectos de los fármacos , Células Cultivadas , Femenino , Hemo Oxigenasa (Desciclizante)/metabolismo , Técnicas In Vitro , Ácido Kaínico/farmacología , Masculino , Modelos Animales , N-Metilaspartato/farmacología , Receptores de Glutamato/efectos de los fármacos , Porcinos , Vasodilatación/fisiología , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología
10.
Am J Physiol Cell Physiol ; 300(2): C256-65, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21123734

RESUMEN

We investigated the role of reactive oxygen species (ROS) in promoting cell survival during oxidative stress induced by the inflammatory mediator tumor necrosis factor-α (TNF-α) in cerebral microvascular endothelial cells (CMVEC) from newborn piglets. Nox4 is the major isoform of NADPH oxidase responsible for TNF-α-induced oxidative stress and apoptosis in CMVEC. We present novel data that Nox4 NADPH oxidase-derived ROS also initiate a cell survival mechanism by increasing production of a gaseous antioxidant mediator carbon monoxide (CO) by constitutive heme oxygenase-2 (HO-2). TNF-α rapidly enhanced endogenous CO production in a superoxide- and NADPH oxidase-dependent manner in CMVEC with innate, but not with small interfering RNA (siRNA)-downregulated Nox4 activity. CORM-A1, a CO-releasing compound, inhibited Nox4-mediated ROS production and enhanced cell survival in TNF-α-challenged CMVEC. The ROS-induced CO-mediated survival mechanism requires functional interactions between the protein kinase B/Akt and extracellular signal-related kinase (ERK)/p38 MAPK signaling pathways activated by TNF-α. In Akt siRNA-transfected CMVEC and in cells with pharmacologically inhibited Akt, Erk1/2, and p38 mitogen-activated protein kinase (MAPK) activities, CORM-A1 was no longer capable of blocking Nox4 activation and apoptosis caused by TNF-α. Overall, Nox4 NADPH oxidase-derived ROS initiate both death and survival pathways in TNF-α-challenged CMVEC. The ROS-dependent cell survival pathway is mediated by an endogenous antioxidant CO, which inhibits Nox4 activation via a mechanism that includes Akt, ERK1/2, and p38 MAPK signaling pathways. The ability of CO to inhibit TNF-α-induced ERK1/2 and p38 MAPK activities in an Akt-dependent manner appears to be the key element in ROS-dependent survival of endothelial cells during TNF-α-mediated brain inflammatory disease.


Asunto(s)
Apoptosis , Encéfalo/metabolismo , Monóxido de Carbono/metabolismo , Células Endoteliales/metabolismo , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Animales Recién Nacidos , Boranos/administración & dosificación , Encéfalo/efectos de los fármacos , Carbonatos/administración & dosificación , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Hemo Oxigenasa (Desciclizante)/metabolismo , Humanos , Isoenzimas/metabolismo , Microvasos/efectos de los fármacos , Microvasos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/metabolismo , Transducción de Señal/efectos de los fármacos , Porcinos/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
11.
Am J Physiol Heart Circ Physiol ; 301(1): H1-H11, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21498777

RESUMEN

Carbon monoxide (CO) is produced by heme oxygenase (HO)-catalyzed heme degradation to CO, iron, and biliverdin. HO has two active isoforms, HO-1 (inducible) and HO-2 (constitutive). HO-2, but not HO-1, is highly expressed in endothelial and smooth muscle cells and in adjacent astrocytes in the brain. HO-1 is expressed basally only in the spleen and liver but can be induced to a varying extent in most tissues. Elevating heme, protein phosphorylation, Ca(2+) influx, and Ca(2+)/calmodulin-dependent processes increase HO-2 activity. CO dilates cerebral arterioles and may constrict or dilate skeletal muscle and renal arterioles. Selected vasodilatory stimuli, including seizures, glutamatergic stimulation, hypoxia, hypotension, and ADP, increase CO, and the inhibition of HO attenuates the dilation to these stimuli. Astrocytic HO-2-derived CO causes glutamatergic dilation of pial arterioles. CO dilates by activating smooth muscle cell large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels. CO binds to BK(Ca) channel-bound heme, leading to an increase in Ca(2+) sparks-to-BK(Ca) channel coupling. Also, CO may bind directly to the BK(Ca) channel at several locations. Endothelial nitric oxide and prostacyclin interact with HO/CO in circulatory regulation. In cerebral arterioles in vivo, in contrast to dilation to acute CO, a prolonged exposure of cerebral arterioles to elevated CO produces progressive constriction by inhibiting nitric oxide synthase. The HO/CO system is highly protective to the vasculature. CO suppresses apoptosis and inhibits components of endogenous oxidant-generating pathways. Bilirubin is a potent reactive oxygen species scavenger. Still many questions remain about the physiology and biochemistry of HO/CO in the circulatory system and about the function and dysfunction of this gaseous mediator system.


Asunto(s)
Vasos Sanguíneos/fisiología , Monóxido de Carbono/fisiología , Fenómenos Fisiológicos Cardiovasculares , Animales , Vasos Sanguíneos/metabolismo , Monóxido de Carbono/metabolismo , Circulación Cerebrovascular/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Hemo Oxigenasa (Desciclizante)/biosíntesis , Hemo Oxigenasa (Desciclizante)/genética , Hemo-Oxigenasa 1/biosíntesis , Hemo-Oxigenasa 1/genética , Humanos , Vasodilatación/fisiología
12.
Am J Physiol Heart Circ Physiol ; 301(2): H428-33, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21572018

RESUMEN

Glutamate-stimulated, astrocyte-derived carbon monoxide (CO) causes cerebral arteriole dilation by activating smooth muscle cell large-conductance Ca(2+)-activated K(+) channels. Here, we examined the hypothesis that glutamate activates heme oxygenase (HO)-2 and CO production via the intracellular Ca(2+) concentration ([Ca(2+)](i))/Ca(2+)-calmodulin signaling pathway in newborn pig astrocytes. The major findings are: 1) glutamate stimulated Ca(2+) transients and increased steady-state [Ca(2+)](i) in cerebral cortical astrocytes in primary culture, 2) in astrocytes permeabilized with ionomycin, elevation of [Ca(2+)](i) concentration-dependently increased CO production, 3) glutamate did not affect CO production at any [Ca(2+)](i) when the [Ca(2+)](i) was held constant, 4) thapsigargin, a sarco/endoplasmic reticulum Ca(2+)-ATPase blocker, decreased basal CO production and blocked glutamate-induced increases in CO, and 5) calmidazolium, a calmodulin inhibitor, blocked CO production induced by glutamate and by [Ca(2+)](i) elevation. Taken together, our data are consistent with the hypothesis that glutamate elevates [Ca(2+)](i) in astrocytes, leading to Ca(2+)- and calmodulin-dependent HO-2 activation, and CO production.


Asunto(s)
Astrocitos/metabolismo , Señalización del Calcio , Monóxido de Carbono/metabolismo , Ácido Glutámico/metabolismo , Análisis de Varianza , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Calmodulina/antagonistas & inhibidores , Calmodulina/metabolismo , Células Cultivadas , Relación Dosis-Respuesta a Droga , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Hemo Oxigenasa (Desciclizante)/metabolismo , Imidazoles/farmacología , Ionomicina/farmacología , Ionóforos/farmacología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/antagonistas & inhibidores , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Porcinos , Tapsigargina/farmacología , Factores de Tiempo , Regulación hacia Arriba
13.
Am J Physiol Heart Circ Physiol ; 300(2): H440-7, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21131483

RESUMEN

Hydrogen sulfide (H2S) is a gaseous signaling molecule that appears to be involved in numerous biological processes, including regulation of blood pressure and vascular tone. The present study is designed to address the hypothesis that H2S is a functionally significant, endogenous dilator in the newborn cerebrovascular circulation. In vivo experiments were conducted using newborn pigs with surgically implanted, closed, cranial windows. Topical application of H2S concentration-dependently (10(-6) to 2×10(-4) M) dilated pial arterioles. This dilation was blocked by glibenclamide (10(-6) M). L-cysteine, the substrate of the H2S-producing enzymes cystathionine γ-lyase (CSE) and cystathionine ß-synthase (CBS), also dilated pial arterioles. The dilation to L-cysteine was blocked by the CSE inhibitor d,l-propargylglycine (PPG, 10 mM) but was unaffected by the CBS inhibitor amino-oxyacetate (AOA, 1 mM). Western blots detected CSE, but not CBS, in cerebral microvessels, whereas CBS is detected in brain parenchyma. Immunohistological CSE expression is predominantly vascular while CBS is expressed mainly in neurons and astrocytes. L-cysteine (5 mM) increased H2S concentration in cerebrospinal fluid (CSF), measured by GC-MS, from 561±205 to 2,783±818 nM before but not during treatment with PPG (1,030±70 to 622±78 nM). Dilation to hypercapnia was inhibited by PPG but not AOA. Hypercapnia increased CSF H2S concentration from 763±243 to 4,337±1789 nM before but not during PPG treatment (357±178 vs. 425±217 nM). These data show that H2S is a dilator of the newborn cerebral circulation and that endogenous CSE can produce sufficient H2S to decrease vascular tone. H2S appears to be a physiologically significant dilator in the cerebral circulation.


Asunto(s)
Animales Recién Nacidos/fisiología , Capilares/efectos de los fármacos , Circulación Cerebrovascular/efectos de los fármacos , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Músculo Liso Vascular/efectos de los fármacos , Animales , Arteriolas/efectos de los fármacos , Arteriolas/fisiología , Química Encefálica/fisiología , Cisteína/farmacología , Gliburida/farmacología , Hipercapnia/fisiopatología , Hipoxia/fisiopatología , Inmunohistoquímica , Isoproterenol/farmacología , Canales KATP/antagonistas & inhibidores , Tono Muscular/efectos de los fármacos , Nitroprusiato/farmacología , Porcinos , Vasodilatación/efectos de los fármacos
14.
J Cereb Blood Flow Metab ; 41(11): 2897-2906, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34013806

RESUMEN

Using the cranial window technique, we investigated acute effects of head cooling on cerebral vascular functions in newborn pigs. Head cooling lowered the rectal and extradural brain temperatures to 34.3 ± 0.6°C and 26.1 ± 0.6°C, respectively. During the 3-h hypothermia period, responses of pial arterioles to endothelium-dependent dilators bradykinin and glutamate were reduced, whereas the responses to hypercapnia and an endothelium-independent dilator sodium nitroprusside (SNP) remained intact. All vasodilator responses were restored after rewarming, suggesting that head cooling did not produce endothelial injury. We tested the hypothesis that the cold-sensitive TRPM8 channel is involved in attenuation of cerebrovascular functions. TRPM8 is immunodetected in cerebral vessels and in the brain parenchyma. During normothermia, the TRPM8 agonist icilin produced constriction of pial arterioles that was antagonized by the channel blocker AMTB. Icilin reduced dilation of pial arterioles to bradykinin and glutamate but not to hypercapnia and SNP, thus mimicking the effects of head cooling on vascular functions. AMTB counteracted the impairment of endothelium-dependent vasodilation caused by hypothermia or icilin. Overall, mild hypothermia produced by head cooling leads to acute reversible reduction of selected endothelium-dependent cerebral vasodilator functions via TRPM8 activation, whereas cerebral arteriolar smooth muscle functions are largely preserved.


Asunto(s)
Encéfalo/irrigación sanguínea , Circulación Cerebrovascular/efectos de los fármacos , Endotelio/efectos de los fármacos , Hipotermia Inducida/efectos adversos , Canales Catiónicos TRPM/efectos de los fármacos , Animales , Animales Recién Nacidos , Arteriolas/efectos de los fármacos , Arteriolas/fisiopatología , Temperatura Corporal/fisiología , Bradiquinina/análisis , Circulación Cerebrovascular/fisiología , Endotelio/fisiopatología , Femenino , Ácido Glutámico/análisis , Cabeza , Hipercapnia/fisiopatología , Hipotermia Inducida/métodos , Masculino , Nitroprusiato/metabolismo , Nitroprusiato/farmacología , Pirimidinonas/farmacología , Recalentamiento/efectos adversos , Agonistas de los Canales de Sodio/farmacología , Porcinos , Canales Catiónicos TRPM/inmunología , Canales Catiónicos TRPM/metabolismo , Vasodilatación/efectos de los fármacos , Vasodilatadores/metabolismo , Vasodilatadores/farmacología
15.
Am J Physiol Heart Circ Physiol ; 298(6): H1687-98, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20363895

RESUMEN

Circulating endothelial cells (CECs) are nonhematopoetic mononuclear cells in peripheral blood that are dislodged from injured vessels during cardiovascular disease, systemic vascular disease, and inflammation. Their occurrence during cerebrovascular insults has not been previously described. Epileptic seizures cause the long-term loss of cerebrovascular endothelial dilator function. We hypothesized that seizures cause endothelial sloughing from cerebral vessels and the appearance of brain-derived CECs (BCECs), possible early indicators of cerebral vascular damage. Epileptic seizures were induced by bicuculline in newborn pigs; venous blood was then sampled during a 4-h period. CECs were identified in the fraction of peripheral blood mononuclear cells by the expression of endothelial antigens (CD146, CD31, and endothelial nitric oxide synthase) and by Ulex europeaus lectin binding. In control animals, few CECs were detected. Seizures caused a time-dependent increase in CECs 2-4 h after seizure onset. Seizure-induced CECs coexpress glucose transporter-1, a blood-brain barrier-specific glucose transporter, indicating that these cells originate in the brain vasculature and are thus BCECs. Seizure-induced BCECs cultured in EC media exhibited low proliferative potential and abnormal cell contacts. BCEC appearance during seizures was blocked by a CO-releasing molecule (CORM-A1) or cobalt protoporphyrin (heme oxygenase-1 inducer), which prevented apoptosis in cerebral arterioles and the loss of cerebral vascular endothelial function during the late postictal period. These findings suggest that seizure-induced BCECs are injured ECs dislodged from cerebral microvessels during seizures. The correlation between the appearance of BCECs in peripheral blood, apoptosis in cerebral vessels, and the loss of postictal cerebral vascular function suggests that BCECs are early indicators of late cerebral vascular damage.


Asunto(s)
Arterias Cerebrales/patología , Trastornos Cerebrovasculares/sangre , Trastornos Cerebrovasculares/diagnóstico , Endotelio Vascular/patología , Epilepsia/sangre , Microvasos/patología , Animales , Apoptosis/fisiología , Bicuculina/efectos adversos , Antígeno CD146/metabolismo , Comunicación Celular/fisiología , Proliferación Celular , Células Cultivadas , Trastornos Cerebrovasculares/etiología , Convulsivantes/efectos adversos , Modelos Animales de Enfermedad , Endotelio Vascular/inmunología , Epilepsia/inducido químicamente , Epilepsia/complicaciones , Femenino , Inmunofenotipificación , Masculino , Valor Predictivo de las Pruebas , Porcinos
16.
J Cereb Blood Flow Metab ; 40(10): 1987-1996, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31594422

RESUMEN

We investigated the effects of sulforaphane (SFN), an isothiocyanate from cruciferous vegetables, in the regulation of cerebral blood flow using cranial windows in newborn pigs. SFN administered topically (10 µM-1 mM) or systemically (0.4 mg/kg ip) caused immediate and sustained dilation of pial arterioles concomitantly with elevated H2S in periarachnoid cortical cerebrospinal fluid. H2S is a potent vasodilator of cerebral arterioles. SFN is not a H2S donor but it acts via stimulating H2S generation in the brain catalyzed by cystathionine γ-lyase (CSE) and cystathionine ß-synthase (CBS). CSE/CBS inhibitors propargylglycine, ß-cyano-L-alanine, and aminooxyacetic acid blocked brain H2S generation and cerebral vasodilation caused by SFN. The SFN-elicited vasodilation requires activation of potassium channels in cerebral arterioles. The inhibitors of KATP and BK channels glibenclamide, paxilline, and iberiotoxin blocked the vasodilator effects of topical and systemic SFN, supporting the concept that H2S is the mediator of the vasodilator properties of SFN in cerebral circulation. Overall, we provide first evidence that SFN is a brain permeable compound that increases cerebral blood flow via a non-genomic mechanism that is mediated via activation of CSE/CBS-catalyzed H2S formation in neurovascular cells followed by H2S-induced activation of KATP and BK channels in arteriolar smooth muscle.


Asunto(s)
Arteriolas/metabolismo , Circulación Cerebrovascular/efectos de los fármacos , Sulfuro de Hidrógeno/metabolismo , Isotiocianatos/farmacología , Canales KATP/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Músculo Liso Vascular/metabolismo , Vasodilatadores/farmacología , Animales , Animales Recién Nacidos , Arteriolas/efectos de los fármacos , Encéfalo/metabolismo , Cistationina betasintasa/antagonistas & inhibidores , Cistationina betasintasa/metabolismo , Cistationina gamma-Liasa/antagonistas & inhibidores , Cistationina gamma-Liasa/metabolismo , Inhibidores Enzimáticos/farmacología , Femenino , Isotiocianatos/antagonistas & inhibidores , Canales KATP/efectos de los fármacos , Canales de Potasio de Gran Conductancia Activados por el Calcio/efectos de los fármacos , Masculino , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Sulfóxidos , Porcinos
17.
Pharmacol Res Perspect ; 8(4): e00630, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32715644

RESUMEN

Sulforaphane (SFN), a bioactive phytochemical isothiocyanate, has a wide spectrum of cytoprotective effects that involve induction of antioxidant genes. Nongenomic antioxidant effects of SFN have not been investigated. Brain oxidative stress during inflammation and excitotoxicity leads to neurovascular injury. We tested the hypothesis that SNF exhibits acute antioxidant effects and prevents neurovascular injury during oxidative stress. In primary cultures of cerebral microvascular endothelial cells (CMVEC) and cortical astrocytes from the newborn pig brain, a pro-inflammatory cytokine TNF-α and an excitotoxic glutamate elevate reactive oxygen species (ROS) and cause cell death by apoptosis. Nox4 NADPH oxidase is the main Nox isoform in CMVEC and cortical astrocytes that is acutely activated by TNF-α and glutamate leading to ROS-mediated cell death by apoptosis. The Nox4 inhibitor GKT137831 blocked NADPH oxidase activity and overall ROS elevation, and prevented apoptosis of CMVEC and astrocytes exposed to TNF-α and glutamate, supporting the leading role of Nox4 in the neurovascular injury. Synthetic SFN (10-11 -10-6  mol/L) inhibited NADPH oxidase activity and reduced overall ROS production in CMVEC and astrocytes within 1-hour exposure to TNF-α and glutamate. Furthermore, in the presence of SFN, the ability of TNF-α and glutamate to produce apoptosis in CMVEC and cortical astrocytes was completely prevented. Overall, SFN at low concentrations exhibits antioxidant and antiapoptotic effects in cerebral endothelial cells and cortical astrocytes via a via a nongenomic mechanism that involves inhibition of Nox4 NADPH oxidase activity. SFN may prevent cerebrovascular injury during brain oxidative stress caused by inflammation and glutamate excitotoxicity.


Asunto(s)
Antioxidantes/farmacología , Inflamación/tratamiento farmacológico , Isotiocianatos/farmacología , Estrés Oxidativo/efectos de los fármacos , Sulfóxidos/farmacología , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Astrocitos/efectos de los fármacos , Astrocitos/patología , Encéfalo/citología , Encéfalo/efectos de los fármacos , Encéfalo/patología , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Femenino , Humanos , Inflamación/patología , Masculino , Especies Reactivas de Oxígeno/metabolismo , Porcinos
18.
Circ Res ; 97(8): 805-12, 2005 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-16166559

RESUMEN

Carbon monoxide (CO) is an endogenous paracrine and autocrine gaseous messenger that regulates physiological functions in a wide variety of tissues. CO induces vasodilation by activating arterial smooth muscle large-conductance Ca2+-activated potassium (BK(Ca)) channels. However, the mechanism by which CO activates BK(Ca) channels remains unclear. Here, we tested the hypothesis that CO activates BK(Ca) channels by binding to channel-bound heme, a BK(Ca) channel inhibitor, and altering the interaction between heme and the conserved heme-binding domain (HBD) of the channel alpha subunit C terminus. Data obtained using thin-layer chromatography, spectrophotometry, mass spectrometry (MS), and MS-MS indicate that CO modifies the binding of reduced heme to the alpha subunit HBD. In contrast, CO does not alter the interaction between the HBD and oxidized heme (hemin), to which CO cannot bind. Consistent with these findings, electrophysiological measurements of native and cloned (cbv) cerebral artery smooth muscle BK(Ca) channels show that CO reverses BK(Ca) channel inhibition by heme but not by hemin. Site-directed mutagenesis of the cbv HBD from CKACH to CKASR abolished both heme-induced channel inhibition and CO-induced activation. Furthermore, on binding CO, heme switches from being a channel inhibitor to an activator. These findings indicate that reduced heme is a functional CO receptor for BK(Ca) channels, introduce a unique mechanism by which CO regulates the activity of a target protein, and reveal a novel process by which a gaseous messenger regulates ion channel activity.


Asunto(s)
Monóxido de Carbono/farmacología , Hemo/metabolismo , Canales de Potasio Calcio-Activados/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células COS , Monóxido de Carbono/metabolismo , Proteínas Portadoras/metabolismo , Chlorocebus aethiops , Hemo/farmacología , Proteínas de Unión al Hemo , Hemoproteínas/metabolismo , Hemina/farmacología , Datos de Secuencia Molecular , Oxígeno/farmacología , Canales de Potasio Calcio-Activados/química , Canales de Potasio Calcio-Activados/metabolismo , Ratas
19.
Ann Neurosci ; 24(1): 12-19, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28596673

RESUMEN

BACKGROUND: Neonatal seizures (NS) are the most common form of neurological dysfunction observed in newborns. PURPOSE: The purpose of this study in newborn piglets was to determine the effect of cerebral hypothermia (CH) on neural activity during pharmacologically induced NS. We hypothesized that the neuroprotective effects of CH would preserve higher frequencies observed in electrocorticogram (ECoG) recordings. METHODS: Power spectral density was employed to determine the levels of brain activity in ECoGs to quantitatively assess the power of each frequency observed in neurological brain states of delta, theta, alpha, and beta-gamma frequencies. RESULT: The most significant reduction of power occurs in the lower frequency band of delta-theta-alpha of CH cohorts, while t score probabilities imply that high-frequency brain activity in the beta-gamma range is preserved in the CH population. CONCLUSION: While the overall power density decreases over time in both groups, the decrease is to a lesser degree in the CH population.

20.
J Appl Physiol (1985) ; 100(3): 1065-76, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16467393

RESUMEN

This review focuses on two gaseous cellular messenger molecules, CO and H2S, that are involved in cerebrovascular flow regulation. CO is a dilatory mediator in active hyperemia, autoregulation, hypoxic dilation, and counteracting vasoconstriction. It is produced from heme by a constitutively expressed enzyme [heme oxygenase (HO)-2] expressed highly in the brain and by an inducible enzyme (HO-1). CO production is regulated by controlling substrate availability, HO-2 catalytic activity, and HO-1 expression. CO dilates arterioles by binding to heme that is bound to large-conductance Ca2+-activated K+ channels. This binding elevates channel Ca2+ sensitivity, that increases coupling of Ca2+ sparks to large-conductance Ca2+-activated K+ channel openings and, thereby, hyperpolarizes the vascular smooth muscle. In addition to dilating blood vessels, CO can either inhibit or accentuate vascular cell proliferation and apoptosis, depending on conditions. H2S may also function as a cerebrovascular dilator. It is produced in vascular smooth muscle cells by hydrolysis of l-cysteine catalyzed by cystathione gamma-lyase (CSE). H2S dilates arterioles at physiologically relevant concentrations via activation of ATP-sensitive K+ channels. In addition to dilating blood vessels, H2S promotes apoptosis of vascular smooth muscle cells and inhibits proliferation-associated vascular remodeling. Thus both CO and H2S modulate the function and the structure of circulatory system. Both the HO-CO and CSE-H2S systems have potential to interact with NO and prostanoids in the cerebral circulation. Much of the physiology and biochemistry of HO-CO and CSE-H2S in the cerebral circulation remains open for exploration.


Asunto(s)
Monóxido de Carbono/fisiología , Circulación Cerebrovascular/fisiología , Sulfuro de Hidrógeno , Transducción de Señal , Animales , Apoptosis , Proliferación Celular , Cistationina gamma-Liasa/fisiología , Hemo Oxigenasa (Desciclizante)/fisiología , Humanos , Músculo Liso Vascular/citología , Músculo Liso Vascular/fisiología , Vasoconstricción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA