RESUMEN
Kiwi (Actinidia chinesis) is an economically important fruit in Korea, with 1,300 ha cultivated and a production of approximately 25,000 tons per year (Kim and Koh, 2018; Kim and Choi, 2023). In late June 2020, fruit scab symptoms were observed on A. chinensis var. rufopulpa in an orchard in Suncheon, Korea. The incidence of scab symptoms among 20-year-old trees was over 75%, primarily superficial, but rendered the fruit less marketable. In the initial stages of the disease, small, light-brown, circular, and oval spots were formed. As the superficial spots expanded, they became cracked scabs measuring 1 to 7 cm with light edges at the later stages. To isolate the causal pathogen, two lesions were cut from two sections of symptomatic tissue, from each of seven fruits from seven trees. Lesions were surface-sterilized with 70% ethanol for 1 min and washed three times with sterilized distilled water (SDW). The sterilized pieces were placed on potato dextrose agar (PDA) and incubated in the dark at 25°C for one week. After subculturing on PDA, single-spore isolation produced 14 isolates: SYP-410 to 423). All 14 colonies appeared greyish-green and cottony on PDA after 7 d. Conidia were pale brown, ellipsoid to obclavate, with ornamented walls, 1 to 6 transverse and 0 to 3 vertical septa, and length × width of 21.5 to 53.4 × 7.3 to 19.2 µm (avg. 33.0 × 12.0 µm, n = 100). Their morphological characteristics were consistent with Alternaria spp. (van der Waals et al. 2011; Woudenberg et al. 2015). We randomly selected three isolates from the morphologically similar cultures and named them SYP-412 to 414 for further investigation. The ITS (GenBank accession nos.: OR901850 to 52), gapdh (OR924309 to 11), tef1 (OR924312 to 14), rpb2 (OR924315 to 17), Alt a1 (OR924318 to 20), endoPG (OR924321 to 23), and OPA10-2 (OR924324 to 26) sequences from SYP-412 to 414 had a 100% (515 bp/515 bp), 100% (578/578), 100% (240/240), 100% (724/724), 95.55% (451/472), 99.33% (445/448), and 100% (634/634) identity with that of type strain A. alternata CBS 918.96 (AF347032, AY278809, KC584693, KC584435, AY563302, KP124026, and KP124633), respectively. Results from the maximum likelihood phylogenetic analysis, based on the seven concatenated gene sequences, placed the representative isolates in a clade with A. alternata. Pathogenicity of SYP-412 was tested using 12 surface-sterilized two-month-old kiwifruits on a 20-year-old trees. Six kiwifruits were spray-inoculated with 5 mL of a conidial suspension (1 × 106 conidia/ml) generated after culturing in PDA medium for 7 d, with or without wounding. Another six control fruits were inoculated with SDW with and without wounding. The inoculated kiwifruits were enclosed in plastic bags to maintain high humidity for one day. Scab symptoms were observed in both wounded and unwounded fruits six weeks after inoculation, but not in the control. The pathogenicity test was performed on a total of three separate trees twice. To satisfy Koch's postulates, A. alternata was re-isolated from all the symptomatic tissues and confirmed by analyzing the ITS and rpb2 genes. Although scab disease caused by A. tenuissima (now A. alternata) has been previously reported in kiwifruit of A. chinensis var. rufopulpa in China (Woudenberg et al. 2015; Ma et al., 2019), this is the first report of its occurrence on kiwifruit in Korea and will help in future detection and control.
RESUMEN
A targeted metabologenomic method was developed to selectively discover terminal oxazole-bearing natural products from bacteria. For this, genes encoding oxazole cyclase, a key enzyme in terminal oxazole biosynthesis, were chosen as the genomic signature to screen bacterial strains that may produce oxazole-bearing compounds. Sixteen strains were identified from the screening of a bacterial DNA library (1,000â strains) using oxazole cyclase gene-targeting polymerase chain reaction (PCR) primers. The PCR amplicon sequences were subjected to phylogenetic analysis and classified into nine clades. 1H-13C coupled-HSQC NMR spectra obtained from the culture extracts of the hit strains enabled the unequivocal detection of the target compounds, including five new oxazole compounds, based on the unique 1JCH values and chemical shifts of oxazole: lenzioxazole (1) possessing an unprecedented cyclopentane, permafroxazole (2) bearing a tetraene conjugated with carboxylic acid, tenebriazine (3) incorporating two modified amino acids, and methyl-oxazolomycins A and B (4 and 5). Tenebriazine displayed inhibitory activity against pathogenic fungi, whereas methyl-oxazolomycins A and B (4 and 5) selectively showed anti-proliferative activity against estrogen receptor-positive breast cancer cells. This metabologenomic method enables the logical and efficient discovery of new microbial natural products with a target structural motif without the need for isotopic labeling.
Asunto(s)
Productos Biológicos , Oxazoles , Oxazoles/química , Oxazoles/farmacología , Oxazoles/metabolismo , Productos Biológicos/química , Productos Biológicos/farmacología , Productos Biológicos/metabolismo , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Metabolómica , Estructura Molecular , Proliferación Celular/efectos de los fármacos , Descubrimiento de Drogas , Bacterias/efectos de los fármacosRESUMEN
A targeted and logical discovery method was devised for natural products containing piperazic acid (Piz), which is biosynthesized from ornithine by l-ornithine N-hydroxylase (KtzI) and N-N bond formation enzyme (KtzT). Genomic signature-based screening of a bacterial DNA library (2020 strains) using polymerase chain reaction (PCR) primers targeting ktzT identified 62 strains (3.1%). The PCR amplicons of KtzT-encoding genes were phylogenetically analyzed to classify the 23 clades into two monophyletic groups, I and II. Cultivating hit strains in media supplemented with 15NH4Cl and applying 1H-15N heteronuclear multiple bond correlation (HMBC) along with 1H-15N heteronuclear single quantum coherence (HSQC) and 1H-15N HSQC-total correlation spectroscopy (HSQC-TOCSY) NMR experiments detected the spectroscopic signatures of Piz and modified Piz. Chemical investigation of the hit strains prioritized by genomic and spectroscopic signatures led to the identification of a new azinothricin congener, polyoxyperuin B seco acid (1), previously reported chloptosin (2) in group I, depsidomycin D (3) incorporating two dehydropiperazic acids (Dpz), and lenziamides A and B (4 and 5), structurally novel 31-membered cyclic decapeptides in group II. By consolidating the phylogenetic and chemical analyses, clade-structure relationships were elucidated for 19 of the 23 clades. Lenziamide A (4) inhibited STAT3 activation and induced G2/M cell cycle arrest, apoptotic cell death, and tumor growth suppression in human colorectal cancer cells. Moreover, lenziamide A (4) resensitized 5-fluorouracil (5-FU) activity in both in vitro cell cultures and the in vivo 5-FU-resistant tumor xenograft mouse model. This work demonstrates that the genomic and spectroscopic signature-based searches provide an efficient and general strategy for new bioactive natural products containing specific structural motifs.
Asunto(s)
Productos Biológicos , Genómica , Humanos , Animales , Ratones , Filogenia , Análisis Espectral , Productos Biológicos/farmacologíaRESUMEN
Although the T helper 2 (Th2) subset is a critical player in the humoral immune response to extracellular parasites and suppression of Th1-mediated inflammation, Th2 cells have been implicated in allergic inflammatory diseases such as asthma, allergic rhinitis, and atopic dermatitis. GATA binding protein 3 (GATA3) is a primary transcription factor that mediates Th2 differentiation and secretion of Th2 cytokines, including IL-4, IL-5, and IL-13. Here, a nucleus-deliverable form of GATA3-transcription modulation domain (TMD) (ndG3-TMD) was generated using Hph-1 human protein transduction domain (PTD) to modulate the transcriptional function of endogenous GATA3 without genetic manipulation. ndG3-TMD was shown to be efficiently delivered into the cell nucleus quickly without affecting cell viability or intracellular signaling events for T cell activation. ndG3-TMD exhibited a specific inhibitory function for the endogenous GATA3-mediated transcription, such as Th2 cell differentiation and Th2-type cytokine production. Intranasal administration of ndG3-TMD significantly alleviated airway hyperresponsiveness, infiltration of immune cells, and serum IgE level in an OVA-induced mouse model of asthma. Also, Th2 cytokine secretion by the splenocytes isolated from the ndG3-TMD-treated mice substantially decreased. Our results suggest that ndG3-TMD can be a new therapeutic reagent to suppress Th2-mediated allergic diseases through intranasal delivery.
Asunto(s)
Asma , Factor de Transcripción GATA3 , Hipersensibilidad Respiratoria , Animales , Humanos , Ratones , Administración Intranasal , Asma/terapia , Núcleo Celular/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Factor de Transcripción GATA3/administración & dosificación , Factor de Transcripción GATA3/química , Ratones Endogámicos BALB C , Ovalbúmina , Hipersensibilidad Respiratoria/terapia , Células Th2RESUMEN
New sulfur-bearing natural products, sadopeptins A and B (1 and 2), were discovered from Streptomyces sp. YNK18 based on a targeted search using the characteristic isotopic signature of sulfur in mass spectrometry analysis. Compounds 1 and 2 were determined to be new cyclic heptapeptides, bearing methionine sulfoxide [Met(O)] and 3-amino-6-hydroxy-2-piperidone (Ahp), based on 1D and 2D NMR spectroscopy along with IR, UV, and MS. The configurations of sadopeptins A and B (1 and 2) were established via the analysis of the ROESY NMR correlation, oxidation, Marfey's method, and circular dichroism (CD) spectroscopy. The bioinformatics analysis of the full Streptomyces sp. YNK18 genome identified a nonribosomal peptide synthetase (NRPS) biosynthetic gene cluster (BGC), and a putative biosynthetic pathway is proposed. Sadopeptins A and B displayed proteasome-inhibitory activity without affecting cellular autophagic flux.
Asunto(s)
Piperidonas , Streptomyces , Complejo de la Endopetidasa Proteasomal , Streptomyces/química , Espectroscopía de Resonancia Magnética , Piperidonas/farmacología , Sulfóxidos/metabolismoRESUMEN
OBJECTIVE: To investigate how the visual complexity of head-up displays (HUDs) influence the allocation of driver's attention in two separate visual domains (near and far domains). BACKGROUND: The types and amount of information displayed on automobile HUDs have increased. With limited human attention capacity, increased visual complexity in the near domain may lead to interference in the effective processing of information in the far domain. METHOD: Near-domain and far-domain vision were separately tested using a dual-task paradigm. In a simulated road environment, 62 participants were to control the speed of the vehicle (SMT; near domain) and manually respond to probes (PDT; far domain) simultaneously. Five HUD complexity levels including a HUD-absent condition were presented block-wise. RESULTS: Near domain performance was not modulated by the HUD complexity levels. However, the far domain detection accuracies were impaired as the HUD complexity level increased, with greater accuracy differences observed between central and peripheral probes. CONCLUSION: Increased HUD visual complexity leads to a biased deployment of driver attention toward the central visual field. Therefore, the formulation of HUD designs must be preceded by an in-depth investigation of the dynamics of human cognition. APPLICATION: To ensure driving safety, HUD designs should be rendered with minimal visual complexity by incorporating only essential information relevant to driving and removing driving-irrelevant or additional visual details.
RESUMEN
Asthma is a chronic inflammatory lung disease that causes respiratory difficulties. Black ginseng extract (BGE) has preventative effects on respiratory inflammatory diseases such as asthma. However, the pharmacological mechanisms behind the anti-asthmatic activity of BGE remain unknown. To investigate the anti-asthmatic mechanism of BGE, phorbol 12-myristate 13-acetate plus ionomycin (PMA/Iono)-stimulated mouse EL4 cells and ovalbumin (OVA)-induced mice with allergic airway inflammation were used. Immune cells (eosinophils/macrophages), interleukin (IL)-4, -5, -13, and serum immunoglobulin E (IgE) levels were measured using an enzyme-linked immunosorbent assay. Inflammatory cell recruitment and mucus secretion in the lung tissue were estimated. Protein expression was analyzed via Western blotting, including that of inducible nitric oxide synthase (iNOS) and the activation of protein kinase C theta (PKCθ) and its downstream signaling molecules. BGE decreased T helper (Th)2 cytokines, serum IgE, mucus secretion, and iNOS expression in mice with allergic airway inflammation, thereby providing a protective effect. Moreover, BGE and its major ginsenosides inhibited the production of Th2 cytokines in PMA/Iono-stimulated EL4 cells. In EL4 cells, these outcomes were accompanied by the inactivation of PKCθ and its downstream transcription factors, such as nuclear factor of activated T cells (NFAT), nuclear factor kappa B (NF-κB), activator of transcription 6 (STAT6), and GATA binding protein 3 (GATA3), which are involved in allergic airway inflammation. BGE also inhibited the activation of PKCθ and the abovementioned transcriptional factors in the lung tissue of mice with allergic airway inflammation. These results highlight the potential of BGE as a useful therapeutic and preventative agent for allergic airway inflammatory diseases such as allergic asthma.
Asunto(s)
Antiasmáticos , Asma , Hipersensibilidad , Panax , Animales , Ratones , Antiasmáticos/farmacología , Antiasmáticos/uso terapéutico , Interleucina-4/metabolismo , Asma/metabolismo , Pulmón/metabolismo , Citocinas/metabolismo , Hipersensibilidad/metabolismo , Transducción de Señal , Inflamación/metabolismo , Inmunoglobulina E , Panax/metabolismo , Ovalbúmina , Ratones Endogámicos BALB C , Modelos Animales de EnfermedadRESUMEN
The recently defined type of cell death ferroptosis has garnered significant attention as a potential new approach to cancer treatment owing to its more immunogenic nature when compared with apoptosis. Ferroptosis is characterized by the depletion of glutathione (GSH)/glutathione peroxidase-4 (GPx4) and iron-dependent lipid peroxidation. Diplacone (DP), a geranylated flavonoid compound found in Paulownia tomentosa fruit, has been identified to have anti-inflammatory and anti-radical activity. In this study, the potential anticancer activity of DP was explored against A549 human lung cancer cells. It was found that DP induced a form of cytotoxicity distinct from apoptosis, which was accompanied by extensive mitochondrial-derived cytoplasmic vacuoles. DP was also shown to increase mitochondrial Ca2+ influx, reactive oxygen species (ROS) production, and mitochondrial permeability transition (MPT) pore-opening. These changes led to decreases in mitochondrial membrane potential and DP-induced cell death. DP also induced lipid peroxidation and ATF3 expression, which are hallmarks of ferroptosis. The ferroptosis inhibitors ferrostatin-1 and liproxstatin-1 were effective in counteracting the DP-mediated ferroptosis-related features. Our results could contribute to the use of DP as a ferroptosis-inducing agent, enabling studies focusing on the relationship between ferroptosis and the immunogenic cell death of cancer cells.
Asunto(s)
Ferroptosis , Humanos , Necrosis por Permeabilidad de la Transmembrana Mitocondrial , Frutas/metabolismo , Muerte Celular/fisiología , Especies Reactivas de Oxígeno/metabolismo , Glutatión/metabolismo , Peroxidación de Lípido , Poro de Transición de la Permeabilidad Mitocondrial/metabolismoRESUMEN
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease which causes breathing problems. YPL-001, consisting of six iridoids, has potent inhibitory efficacy against COPD. Although YPL-001 has completed clinical trial phase 2a as a natural drug for COPD treatment, the most effective iridoid in YPL-001 and its mechanism for reducing airway inflammation remain unclear. To find an iridoid most effectively reducing airway inflammation, we examined the inhibitory effects of the six iridoids in YPL-001 on TNF or PMA-stimulated inflammation (IL-6, IL-8, or MUC5AC) in NCI-H292 cells. Here, we show that verproside among the six iridoids most strongly suppresses inflammation. Both TNF/NF-κB-induced MUC5AC expression and PMA/PKCδ/EGR-1-induced IL-6/-8 expression are successfully reduced by verproside. Verproside also shows anti-inflammatory effects on a broad range of airway stimulants in NCI-H292 cells. The inhibitory effect of verproside on the phosphorylation of PKC enzymes is specific to PKCδ. Finally, in vivo assay using the COPD-mouse model shows that verproside effectively reduces lung inflammation by suppressing PKCδ activation and mucus overproduction. Altogether, we propose YPL-001 and verproside as candidate drugs for treating inflammatory lung diseases that act by inhibiting PKCδ activation and its downstream pathways.
Asunto(s)
Interleucina-6 , Enfermedad Pulmonar Obstructiva Crónica , Animales , Humanos , Ratones , Células Epiteliales/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Interleucina-6/metabolismo , Iridoides/farmacología , Iridoides/uso terapéutico , Iridoides/metabolismo , Pulmón/metabolismo , FN-kappa B/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Proteína Quinasa C-delta/metabolismoRESUMEN
BACKGROUND & AIMS: Antiviral treatment criteria are based on disease progression risk, and hepatocellular carcinoma (HCC) surveillance recommendations for patients with chronic hepatitis B (CHB) without cirrhosis is based on an annual incidence threshold of 0.2%. However, accurate and precise disease progression estimate data are limited. Thus, we aimed to determine rates of cirrhosis and HCC development stratified by age, sex, treatment status, and disease activity based on the 2018 American Association for the Study of Liver Diseases and 2017 European Association for the Study of the Liver guidelines. METHODS: We analyzed 18,338 patients (8914 treated, 9424 untreated) from 6 centers from the United States and 27 centers from Asia-Pacific countries. The Kaplan-Meier method was used to estimate annual progression rates to cirrhosis or HCC in person-years. RESULTS: The cohort was 63% male, with a mean age of 46.19 years, with baseline cirrhosis of 14.3% and median follow up of 9.60 years. By American Association for the Study of Liver Diseases criteria, depending on age, sex, and disease activity, annual incidence rates ranged from 0.07% to 3.94% for cirrhosis, from 0.04% to 2.19% for HCC in patients without cirrhosis, and from 0.40% to 8.83% for HCC in patients with cirrhosis. Several subgroups of patients without cirrhosis including males younger than 40 years of age and females younger than 50 years of age had annual HCC risk near or exceeding 0.2%. Similar results were found using European Association for the Study of the Liver criteria. CONCLUSION: There is great variability in CHB disease progression rates even among "lower-risk" populations. Future CHB modeling studies, public health planning, and HCC surveillance recommendation should be based on more precise disease progression rates based on sex, age, and disease activity, plus treatment status.
Asunto(s)
Carcinoma Hepatocelular , Hepatitis B Crónica , Neoplasias Hepáticas , Antivirales/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/terapia , Femenino , Hepatitis B Crónica/complicaciones , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/epidemiología , Humanos , Incidencia , Cirrosis Hepática/complicaciones , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/terapia , Masculino , Persona de Mediana Edad , Medicina de Precisión , Estudios RetrospectivosRESUMEN
Molecules that undergo light-driven structural transformations constitute the core components in photoswitchable molecular systems and materials. Among various families of photoswitches, photochromic hydrazones have recently emerged as a novel class of photoswitches with superb properties, such as high photochemical conversion, spectral tunability, thermal stability, and fatigue resistance. Hydrazone photoswitches have been adopted in various adaptive materials at different length scales, however, their utilization for modulating biomolecules still has not been explored. Herein, we present new hydrazone switches that can photomodulate the structures of short peptides. Systematic investigation on a set of hydrazone derivatives revealed that installation of the amide group does not significantly alter the photoswitching behaviors. Importantly, a hydrazone switch comprising an upper phenyl ring and a lower quinolinyl ring was effective for structural control of peptides. We anticipate that this work, as a new milestone in the research of hydrazone switches, will open a new avenue for structural and functional control of biomolecules.
Asunto(s)
Hidrazonas , Péptidos , Hidrazonas/química , Péptidos/químicaRESUMEN
In June 2020, brown spot symptoms were observed in a commercial potato field located in Yeocheon, Gyeonggi Province, Korea. The symptoms were similar to those associated with early blight. Brown lesions on leaves were circular and expanded rapidly under high humidity and warm temperatures ranging 12°C at night to 30°C during daytime. Over 60% of potato (Solanum tuberosum L. cv. Superior) leaves showed the symptoms. For fungal isolation, infected leaf tissues (5 × 5 mm) from 14 infected samples were immersed in 70% ethanol for 1 min, rinsed three times in sterilized water, dried, placed on water agar amended with 100 ppm of streptomycin, and then incubated in the dark at 25°C. Hyphae emerging from the tissues were subcultured on V8-Juice agar (8% of V8-Juice, 1.5% agar, pH 7), and the obtaining cultures were subjected to single-spore isolation, resulting in 14 isolates (SYP-934~947). Three representative isolates, SYP-934 to SYP-936, were deposited in the Korean Agriculture Culture Collection (Accession Nos. KACC 410058 to KACC 410060). Conidia (n = 100) produced on the colony were brown, ellipsoid to ovoid with walls ornamented, 1 to 6 transverse and 0-3 vertical septa, and length × width of 20-45 × 7 to 24 µm (n = 100). Their morphological characteristics were consistent with Alternaria alternata (Simmons, 2007; van der Waals et al., 2011; Woundenberg et al. 2015). Sequences of the following loci in the 14 isolates were determined as described in Woundenberg et al. (2013 and 2014: the internal transcribed spacer (primer pairs VG9/ITS4, GenBank accession nos. OP581413-25), glyceraldehyde-3-phosphate dehydrogenase (gpd1/gpd2, OP588286-99), RNA polymerase second largest subunit (RPB2-5F2/fRPB2-7cR, OP588314-27), translation elongation factor 1-alpha (EF1-728F/EF1-986R, OP588300-13), Alternaria major allergen gene (Alt-For/Alt-Rev, OP588328-41), endopolygalacturonase (PG3/PG2b, OP588342-55), and an unknown gene region (OPA10-2R/OPA10-2L, OP588356-68). A neighbor-joining phylogenetic analysis based on the concatenated gene sequences, which was performed using the MEGA X program (Kumar et al., 2018), placed the 14 isolates in the clade containing A. alternata isolates. To test pathogenicity, one-month-old potato (S. tuberosum cv. Superior) plants grown in a 25°C growth chamber were sprayed with conidial suspensions (1×106 conidia/mL) prepared from 14-day-old cultures of three isolates (KACC 410058 to KACC 410060). Sterile distilled water was used as the control treatment. The inoculated pots were placed in a plastic box to maintain high humidity and incubated in the dark at 25°C for 2 days. The plants were transferred to a growth chamber (16h light with over 70% humidity at 25°C). Symptoms were first observed after 3 days post inoculation (dpi) with all three isolates, and severe brown spot symptoms were observed after 7 dpi. No symptom was observed in the control treatment. The pathogenicity assay was repeated at triplicate. Reisolated cultures from lesions were confirmed to be A. alternata based on their sequence at the rpb2 locus, thus fulfilling Koch's postulates. Alternaria alternata has been reported to cause brown spot and leaf blight on potato leaves in Israel (Dorby et al., 1984) and South Africa (van der Waals., et al. 2011). To our knowledge, this study is the first report of A. alternata causing brown spot disease in Korea.
RESUMEN
INTRODUCTION: This study examined factors that predict stress level and life satisfaction among adults with intellectual or developmental disabilities during the COVID-19 pandemic and the role of social support. METHOD: From a larger study about the experiences during the pandemic of 2028 individuals with and without disabilities, 181 adults with intellectual or developmental disabilities (or proxy) responded. RESULTS: Most respondents with intellectual or developmental disabilities (92.8%) reported negative impacts from the pandemic, with 55.2% of the 96 employed pre-pandemic reporting impacted employment, including job loss. The negative impact of the pandemic was a significant predictor of stress level; social support was related to reduced stress. Stress level and the negative impact of the pandemic were inversely related to life satisfaction; social support was positively related to life satisfaction. Social support partially mediated the association between stress level and life satisfaction. DISCUSSION: Comprehensive services and social support systems are needed to combat the impact of the pandemic.
Asunto(s)
COVID-19 , Discapacidad Intelectual , Niño , Discapacidades del Desarrollo/epidemiología , Humanos , Discapacidad Intelectual/epidemiología , Pandemias , Satisfacción Personal , SARS-CoV-2 , Apoyo SocialRESUMEN
BACKGROUND: NAFLD incidence, NASH prevalence, NAFLD fibrosis prevalence, incidence of metabolic comorbidities, and mortality data in the NAFLD population remain limited. AIMS: We used a meta-analytic approach to "stage" NAFLD among the Korean population. METHODS: We searched PubMed, Embase, Cochrane Library, and KoreaMed from inception until June 29, 2019, and calculated pooled estimates via the random-effects model. RESULTS: We screened 1,485 studies and analyzed 191 eligible studies: 179 (3,556,579 participants) for NAFLD prevalence and outcome analysis and 32 (1,089,785 participants) for NAFLD incidence analysis. NAFLD prevalence was 31.46% overall and 50-60% in those with metabolic risks. The incidence (per 1,000 person-years) of NAFLD was 42.8 overall and 70-77% in those with metabolic risk. The incidence (per 1,000 person-years) of new-onset T2DM, hypertension, cardiovascular disease, and chronic kidney disease was found to be 16.9, 47.9, 100.6, and 13.9, respectively. From biopsy data, 30.21% of the NAFLD population had moderate-to-severe steatosis (9 studies, 2,461 participants) and 52.27% had NASH (7 studies, 1,168 participants) and 85.41% had fibrosis Asunto(s)
Enfermedad del Hígado Graso no Alcohólico
, Humanos
, Incidencia
, Cirrosis Hepática/epidemiología
, Enfermedad del Hígado Graso no Alcohólico/epidemiología
, Prevalencia
, República de Corea/epidemiología
RESUMEN
Cement-free and photosynthetic cyanobacterial cell-based living building materials (LBMs) can be manufactured using microbially induced calcium carbonate precipitation (MICP) technology. Here, we present a protocol for cultivating Leptolyngbya boryana GGD and manufacturing LBMs using a sand-gelatin solution. We describe steps for fabricating acrylic molds and mixing abiotic substances with cyanobacterial cells for constructing LBMs. We then detail the procedures for analyzing the compressive strengths of our LBMs with or without the cyanobacterial cells using a universal testing machine (UTM). For complete details on the use and execution of this protocol, please refer to Son et al.1.
RESUMEN
INTRODUCTION: As part of routine safety surveillance, thousands of articles of potential interest are manually triaged for review by safety surveillance teams. This manual triage task is an interesting candidate for automation based on the abundance of process data available for training, the performance of natural language processing algorithms for this type of cognitive task, and the small number of safety signals that originate from literature review, resulting in its lower risk profile. However, deep learning algorithms introduce unique risks and the validation of such models for use in Good Pharmacovigilance Practice remains an open question. OBJECTIVE: Qualifying an automated, deep learning approach to literature surveillance for use at AstraZeneca. METHODS: The study is a prospective validation of a literature surveillance triage model, comparing its real-world performance with that of human surveillance teams working in parallel. The biggest risk in modifying this triage process is missing a safety signal (resulting in model false negatives) and hence model recall is the main evaluation metric considered. RESULTS: The model demonstrates consistent global performance from training through testing, with recall rates comparable to that of existing surveillance teams. The model is accepted for use specifically for those products where non-inferiority to the manual process is rigorously demonstrated. CONCLUSION: Characterizing model performance prospectively, under real-world conditions, allows us to thoroughly examine model consistency and failure modes, qualifying it for use in our surveillance processes. We also identify potential future improvements and recognize the opportunity for the community to collaborate on this shared task.
Asunto(s)
Algoritmos , Aprendizaje Automático , Humanos , Procesamiento de Lenguaje Natural , Automatización , FarmacovigilanciaRESUMEN
Objective: Our study develops a generative adversarial network (GAN)-based method that generates faithful synthetic image data of human cardiomyocytes at varying stages in their maturation process, as a tool to significantly enhance the classification accuracy of cells and ultimately assist the throughput of computational analysis of cellular structure and functions. Methods: Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) were cultured on micropatterned collagen coated hydrogels of physiological stiffnesses to facilitate maturation and optical measurements were performed for their structural and functional analyses. Control groups were cultured on collagen coated glass well plates. These image recordings were used as the real data to train the GAN model. Results: The results show the GAN approach is able to replicate true features from the real data, and inclusion of such synthetic data significantly improves the classification accuracy compared to usage of only real experimental data that is often limited in scale and diversity. Conclusion: The proposed model outperformed four conventional machine learning algorithms with respect to improved data generalization ability and data classification accuracy by incorporating synthetic data. Significance: This work demonstrates the importance of integrating synthetic data in situations where there are limited sample sizes and thus, effectively addresses the challenges imposed by data availability.
RESUMEN
Adzuki bean (Vigna angularis), which provides plant-based proteins and functional substances, requires a long soaking time during processing, which limits its usefulness to industries and consumers. To improve this, ultrasonic treatment using high pressure and shear force was judged to be an appropriate pretreatment method. This study aimed to determine the optimal conditions of ultrasound treatment for the improved hydration of adzuki beans using the response surface methodology (RSM). Independent variables chosen to regulate the hydration process of the adzuki beans were the soaking time (2-14 h, X1), treatment intensity (150-750 W, X2), and treatment time (1-10 min, X3). Dependent variables chosen to assess the differences in the beans post-immersion were moisture content, water activity, and hardness. The optimal conditions for treatment deduced through RSM were a soaking time of 12.9 h, treatment intensity of 600 W, and treatment time of 8.65 min. In this optimal condition, the values predicted for the dependent variables were a moisture content of 58.32%, water activity of 0.9979 aw, and hardness of 14.63 N. Upon experimentation, the results obtained were a moisture content of 58.28 ± 0.56%, water activity of 0.9885 ± 0.0040 aw, and hardness of 13.01 ± 2.82 g, confirming results similar to the predicted values. Proper ultrasound treatment caused cracks in the hilum, which greatly affects the water absorption of adzuki beans, accelerating the rate of hydration. These results are expected to help determine economically efficient processing conditions for specific purposes, in addition to solving industrial problems associated with the low hydration rate of adzuki beans.
Asunto(s)
Manipulación de Alimentos , Vigna , Agua , Vigna/química , Agua/química , Manipulación de Alimentos/métodos , Ultrasonido , Dureza , Factores de Tiempo , Ondas Ultrasónicas , Semillas/química , Fabaceae/químicaRESUMEN
PURPOSE: This study aims to explore the factors influencing nursing professionalism among nursing students, focusing on the image of nurses, satisfaction with their major, and career metacognition. METHODS: We conducted a descriptive survey with 185 nursing students from D city and K region on June 10-30, 2024. Data were analyzed using IBM SPSS ver. 27.0 (IBM Corp.), employing descriptive statistics, t tests, one-way ANOVA, Scheffé tests, Pearson's correlation coefficients, and regression analysis. Multiple linear regression analysis was used to identify factors affecting nursing professionalism among nursing students. RESULTS: The regression analysis revealed that the image of nurses (ß=.69, p<.001) and monitoring aspect of career metacognition (ß=.13, p=.025) were significant predictors of nursing professionalism, accounting for 64.5% of the variance. CONCLUSION: The findings indicate that the image of nurses and monitoring component of career metacognition are critical in shaping nursing professionalism among nursing students. Therefore, nursing education programs should aim to improve the image of nurses and promote self-reflective career practices as strategies to foster professionalism among nursing students.
RESUMEN
Brown leaf spot disease caused by Alternaria spp. is among the most common diseases of potato crops. Typical brown spot symptoms were observed in commercial potato-cultivation areas of northern Korea from June to August 2020-2021. In total, 68 isolates were collected, and based on sequence analysis of the internal transcribed spacer (ITS) region, the collected isolates were identified as Alternaria spp. (80.9%). Phylogenetic analysis revealed that a majority of these isolates clustered within a clade that included A. alternata. Additionally, the ITS region and rpb2 yielded the most informative sequences for the identification of A. alternata. Pathogenicity tests confirmed that the collected pathogens elicited symptoms identical to those observed in the field. In pathogenicity tests performed on seven commercial cultivars, the pathogens exhibited strong virulence in both wound and non-wound inoculations. Among the cultivars tested, Arirang-1ho, Arirang-2ho, and Golden Ball were resistant to the pathogens. Furthermore, among the fungicides tested in vitro, mancozeb and difenoconazole were found to be effective for inhibiting mycelial growth. In summary, our findings suggest that A. alternata plays a critical role in leaf disease in potato-growing regions and emphasise the necessity of continuous monitoring and management to protect against this disease in Korea.