Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Pharm Dev Technol ; 29(3): 248-257, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38416122

RESUMEN

This study aimed to develop a tablet that shows a drug release profile similar to the tofacitinib sustained-release tablet (Xeljanz XR®; OROS™) using hot melt extrusion technology. Tofacitinib citrate was selected as the drug. HPMCAS, HPMCP, and Kollidon VA64 were used as thermoplastic polymers to prepare a hot-melt extrudate. The extrudate was obtained from a twin screw extruder and pelletizer. The granules were compressed using a single punch press machine and then coated. TGA, DSC, XRD, FT-IR, and SEM were performed on the hot melt extrudate to understand its physicochemical properties. Dissolution tests were performed using the paddle method (USP Apparatus II). The results showed that the crystallinity state of tofacitinib changed to amorphous after the hot melt extrusion process; however, no chemical change was observed. The drug release profile was similar to that of Xeljanz XR®, which has an initial lag time owing to its OROS™ formulation; a coating process was performed to obtain a similar drug release profile. The lag time was controlled by adjusting the thickness of the coating layer. Moreover, the extrudate size and compression force during tableting did not significantly affect drug release. In conclusion, the new tofacitinib sustained-release tablet prepared using hot melt extrusion showed a drug release behavior similar to that of Xeljanz XR®.


Asunto(s)
Tecnología de Extrusión de Fusión en Caliente , Calor , Piperidinas , Pirimidinas , Tecnología de Extrusión de Fusión en Caliente/métodos , Preparaciones de Acción Retardada/química , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Comprimidos/química , Liberación de Fármacos , Composición de Medicamentos/métodos
2.
Molecules ; 25(19)2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32977631

RESUMEN

In the present study, a simple, rapid, and reliable bioanalytical method was developed using liquid chromatography with tandem-mass spectrometry (LC-MS/MS) to quantify 2',4',6'-trihydroxyacetophenone (THAP) in rat and dog plasma with 2',4',6'-trihydroxybenzaldehyde as an internal standard (IS). The LC-MS/MS instrument was operated in the multiple reaction monitoring (MRM) mode to detect THAP at m/z transition 166.89 > 82.8 and IS at 152.89 > 82.8, respectively. A simple, one-step protein precipitation (PP) method was employed with acetonitrile for sample preparation. Utilizing a Gemini C18 column, THAP and IS were separated with an isocratic mobile phase consisting of 10 mM ammonium acetate and methanol (10:90, v/v) at a flow rate of 0.2 mL/min. Total chromatographic run time was 2.5 min per sample injection. The standard calibration curve for THAP was linear (r2 ≥ 0.9987) over the concentration range of 0.1 to 100 µg/mL with the lower limit of quantitation (LLOQ) of 0.1 µg/mL (S/N ratio > 10). According to the regulatory guidelines from the U.S. Food and Drug Administration (FDA) and the Korea Ministry of Food and Drug Safety (MFDS), our newly developed biomedical analytical method was fully and adequately validated in terms of selectivity, sensitivity, linearity, intra- and inter-day precision and accuracy, recovery, matrix effect, stability, and dilution integrity. Our validated assay was successfully utilized in a nonclinical pharmacokinetic study of THAP in rats and dogs.


Asunto(s)
Acetofenonas/sangre , Acetofenonas/farmacocinética , Análisis Químico de la Sangre/métodos , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Animales , Calibración , Perros , Límite de Detección , Ratas , Factores de Tiempo
3.
Pharm Dev Technol ; 25(5): 525-534, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31985320

RESUMEN

The aim of this study was to prepare various types of solid dispersions (SDs) by the hot-melt extrusion technique. Next, process analytical technology (PAT) such as Fourier transform-infrared (FT-IR) and Raman and near infrared (NIR) spectroscopy were applied to determine the solubilization effect. The SDs and its tablets were prepared. Differential scanning calorimetry (DSC), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were performed to determine the morphological and crystalline characteristics of the SDs. Additionally, PAT analyses were performed to identify the solubilization of the celecoxib. Dissolution testing was performed using the paddle method indicated in the US Pharmacopeia Apparatus II. Based on SEM, DSC, and XRD analysis, all SDs changed successfully from the crystalline to the amorphous form. However, FT-IR, Raman, and NIR analysis used in PAT showed that SDs were divided into two groups. New peaks formed as the amount of drug loading increased to >50% in the SD and the dissolution rates were lower than those of the marketed drug. Drug loading levels of ≤50% showed no new peak and exhibited strong solubilization effects. PAT tools can be used to discriminate between extrudates with poor (<50% drug release after 120 min) and desirable (>75% drug release after 120 min) dissolution performance.


Asunto(s)
Antiinflamatorios no Esteroideos/química , Celecoxib/química , Composición de Medicamentos/métodos , Tecnología de Extrusión de Fusión en Caliente/métodos , Antiinflamatorios no Esteroideos/normas , Celecoxib/normas , Dureza , Microscopía Electrónica de Rastreo , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Espectroscopía Infrarroja Corta , Espectrometría Raman , Comprimidos
4.
AAPS PharmSciTech ; 19(7): 3067-3075, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30094721

RESUMEN

The purpose of this study was to prepare sustained release (SR) matrix tablets using a direct compression incorporated with a post-heating process. Allopurinol was selected due to the water-soluble property and Compritol 888 ATO® (also known as glyceryl behenate) was used as an SR matrix-forming agent. The API, SR material, microcrystalline cellulose, and magnesium stearate (lubricant) were mixed and prepared into a tablet by a direct compression method. The compressed tablets were stored in a dry oven at four temperatures (60, 70, 80, and 90°C) and for three time periods (15, 30, 45 min). The DSC and PXRD data indicated that the crystallinity of the API was not altered by the post-heating method. However, SEM images demonstrated that Compritol 888 ATO® was melted by the post-heating method, and that the melted Compritol 888 ATO® could form a strong matrix. This strong matrix led to the significant sustained release behavior of hydrophilic APIs. As little as 3 mg of Compritol 888 ATO® (0.65% of total tablet weight), when heated at 80°C for 15 min, showed sustained release over 10 h. The post-heating method exerted a significant influence on lipid-based matrix tablets and allowed a reduction in the amount of material required for a water-soluble drug. This will also provide a valuable insight into lipid-based SR tablets and will allow their application to higher quality products and easier processing procedures.


Asunto(s)
Alopurinol/síntesis química , Ácidos Grasos/síntesis química , Calor , Alopurinol/metabolismo , Preparaciones de Acción Retardada/síntesis química , Preparaciones de Acción Retardada/metabolismo , Excipientes/síntesis química , Ácidos Grasos/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Solubilidad , Comprimidos , Temperatura
5.
Drug Dev Ind Pharm ; 43(5): 789-796, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27486807

RESUMEN

The objective of this work was to use hot-melt extrusion (HME) technology to improve the physiochemical properties of lansoprazole (LNS) to prepare stable enteric coated LNS tablets. For the extrusion process, we chose Kollidon® 12 PF (K12) polymeric matrix. Lutrol® F 68 was selected as the plasticizer and magnesium oxide (MgO) as the alkalizer. With or without the alkalizer, LNS at 10% drug load was extruded with K12 and F68. LNS changed to the amorphous phase and showed better release compared to that of the pure crystalline drug. Inclusion of MgO improved LNS extrudability and release and resulted in over 80% drug release in the buffer stage. Hot-melt extruded LNS was physically and chemically stable after 12 months of storage. Both formulations were studied for compatibility with Eudragit® L100-55. The optimized formulation was compressed into a tablet followed by coating process utilizing a pan coater using L100-55 as an enteric coating polymer. In a two-step dissolution study, the release profile of the enteric coated LNS tablets in the acidic stage was less than 10% of the LNS, while that in the buffer stage was more than 80%. Drug content analysis revealed the LNS content to be 97%, indicating the chemical stability of the enteric coated tablet after storage for six months. HME, which has not been previously used for LNS, is a valuable technique to reduce processing time in the manufacture of enteric coated formulations of an acid-sensitive active pharmaceutical ingredient as compared to the existing methods.


Asunto(s)
Lansoprazol/química , Comprimidos Recubiertos/química , Rastreo Diferencial de Calorimetría/métodos , Química Farmacéutica/métodos , Estabilidad de Medicamentos , Excipientes/química , Plastificantes/química , Polietilenglicoles/química , Polímeros/química , Povidona/química , Solubilidad/efectos de los fármacos , Tecnología Farmacéutica
6.
J Drug Deliv Sci Technol ; 38: 51-58, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29312469

RESUMEN

The objective of the present study was to compare the influence of Eudragit® RS PO and RL PO blends on the release of water-soluble and insoluble drugs from hot-melt extruded formulations. In addition, we aimed to evaluate drug content uniformity and distribution by Fourier transform-infrared (FT-IR) chemical imaging. Theophylline (TP) and carbamazepine (CBZ) were selected as the water-soluble and insoluble model drugs, respectively. Eudragit® RS PO and RL PO were selected as the polymeric matrices. FT-IR chemical imaging clearly demonstrated the content uniformity and distribution for both drugs in the extrudates, which was confirmed by HPLC. Increasing the ratio of Eudragit® RL PO led to an increase in the in vitro drug release, whereas an increase in the ratio of Eudragit® RS PO sustained the drug release for up to 12 h. The hot-melt extrusion of TP and CBZ with varying ratios of Eudragit® RS PO and RL PO can be employed to tailor the drug release profiles. In this study, we demonstrated, for the first time, the use of FT-IR chemical imaging as a process analytical technique to determine the drug content uniformity and distribution. Our data correlated well with the results of HPLC analysis in the study of tailored drug release from the prepared hot-melt extruded formulation.

7.
Pharm Dev Technol ; 22(6): 740-753, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26821841

RESUMEN

This study aimed to investigate the combined effect of magnesium oxide (MgO) as an alkalizer and polyethylene glycol (PEG) as a plasticizer and wetting agent in the presence of Kollidon® 12 PF and 17 PF polymer carriers on the release profile of mefenamic acid (MA), which was prepared via hot-melt extrusion technique. Various drug loads of MA and various ratios of the polymers, PEG 3350 and MgO were blended using a V-shell blender and extruded using a twin-screw extruder (16-mm Prism EuroLab, ThermoFisher Scientific, Carlsbad, CA) at different screw speeds and temperatures to prepare a solid dispersion system. Differential scanning calorimetry and X-ray diffraction data of the extruded material confirmed that the drug existed in the amorphous form, as evidenced by the absence of corresponding peaks. MgO and PEG altered the micro-environmental pH to be more alkaline (pH 9) and increased the hydrophilicity and dispersibility of the extrudates to enhance MA solubility and release, respectively. The in vitro release study demonstrated an immediate release for 2 h with more than 80% drug release within 45 min in matrices containing MgO and PEG in combination with polyvinylpyrrolidone when compared to the binary mixture, physical mixture and pure drug.


Asunto(s)
Composición de Medicamentos , Óxido de Magnesio , Ácido Mefenámico , Polietilenglicoles , Rastreo Diferencial de Calorimetría , Química Farmacéutica , Portadores de Fármacos , Calor , Solubilidad
8.
Drug Dev Ind Pharm ; 42(1): 123-130, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25997363

RESUMEN

OBJECTIVES: The aim of the current research project was to investigate the effect of pressurized carbon dioxide (P-CO2) on the physico-mechanical properties of ketoprofen (KTP)-incorporated hydroxypropylcellulose (HPC) (Klucel™ ELF, EF, and LF) produced using hot-melt extrusion (HME) techniques and to assess the plasticization effect of P-CO2 on the various polymers tested. METHODS: The physico-mechanical properties of extrudates with and without injection of P-CO2 were examined and compared with extrudates with the addition of 5% liquid plasticizer of propylene glycol (PG). The extrudates were milled and compressed into tablets. Tablet characteristics of the extrudates with and without injection of P-CO2 were evaluated. RESULTS AND CONCLUSION: P-CO2 acted as a plasticizer for tested polymers, which allowed for the reduction in extrusion processing temperature. The microscopic morphology of the extrudates was changed to a foam-like structure due to the expansion of the CO2 at the extrusion die. The foamy extrudates demonstrated enhanced KTP release compared with the extrudates processed without P-CO2 due to the increase of porosity and surface area of those extrudates. Furthermore, the hardness of the tablets prepared by foamy extrudates was increased and the percent friability was decreased. Thus, the good binding properties and compressibility of the extrudates were positively influenced by utilizing P-CO2 processing.


Asunto(s)
Dióxido de Carbono/química , Celulosa/análogos & derivados , Composición de Medicamentos/métodos , Cetoprofeno/química , Plastificantes/química , Rastreo Diferencial de Calorimetría , Celulosa/química , Portadores de Fármacos/química , Liberación de Fármacos , Calor , Cetoprofeno/administración & dosificación , Cetoprofeno/farmacocinética , Tamaño de la Partícula , Polímeros/química , Porosidad , Presión , Solubilidad , Comprimidos , Termogravimetría
9.
Drug Dev Ind Pharm ; 41(9): 1479-87, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25224341

RESUMEN

The recrystallization of an amorphous drug in a solid dispersion system could lead to a loss in the drug solubility and bioavailability. The primary objective of the current research was to use an improved kinetic model to evaluate the recrystallization kinetics of amorphous structures and to further understand the factors influencing the physical stability of amorphous solid dispersions. Amorphous solid dispersions of fenofibrate with different molecular weights of hydroxypropylcellulose, HPC (Klucel™ LF, EF, ELF) were prepared utilizing hot-melt extrusion technology. Differential scanning calorimetry was utilized to quantitatively analyze the extent of recrystallization in the samples stored at different temperatures and relative humidity (RH) conditions. The experimental data were fitted into the improved kinetics model of a modified Avrami equation to calculate the recrystallization rate constants. Klucel LF, the largest molecular weight among the HPCs used, demonstrated the greatest inhibition of fenofibrate recrystallization. Additionally, the recrystallization rate (k) decreased with increasing polymer content, however exponentially increased with higher temperature. Also k increased linearly rather than exponentially over the range of RH studied.


Asunto(s)
Celulosa/análogos & derivados , Fenofibrato/administración & dosificación , Modelos Químicos , Polímeros/química , Rastreo Diferencial de Calorimetría , Celulosa/química , Química Farmacéutica/métodos , Cristalización , Composición de Medicamentos , Estabilidad de Medicamentos , Fenofibrato/química , Calor , Humedad , Cinética , Peso Molecular , Solubilidad , Temperatura
10.
J Drug Deliv Sci Technol ; 29: 189-198, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26640526

RESUMEN

The objective of this study was to investigate the extrudability, drug release, and stability of fenofibrate (FF) formulations utilizing various hot-melt extrusion processing parameters and polyvinylpyrrolidone (PVP) polymers of various molecular weights. The different PVP grades selected for this study were Kollidon® 12 PF (K12), Kollidon® 30 (K30), and Kollidon® 90 F (K90). FF was extruded with these polymers at three drug loadings (15%, 25%, and 35% w/w). Additionally, for FF combined with each of the successfully extruded PVP grades (K12 and K30), the effects of two levels of processing parameters for screw design, screw speed, and barrel temperature were assessed. It was found that the FF with (K90) was not extrudable up to 35% drug loading. With low drug loading, the polymer viscosity significantly influenced the release of FF. The crystallinity remaining was vital in the highest drug-loaded formulation dissolution profile, and the glass transition temperature of the polymer significantly affected its stability. Modifying the screw configuration resulted in more than 95% post-extrusion drug content of the FF-K30 formulations. In contrast to FF-K30 formulations, FF release and stability with K12 were significantly influenced by the extrusion temperature and screw speed.

11.
J Drug Deliv Sci Technol ; 27: 18-27, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25914727

RESUMEN

The objective of this study was to enhance the solubility as well as to mask the intensely bitter taste of the poorly soluble drug, Mefenamic acid (MA). The taste masking and solubility of the drug was improved by using Eudragit® E PO in different ratios via hot melt extrusion (HME), solid dispersion technology. Differential scanning calorimetry (DSC) studies demonstrated that MA and E PO were completely miscible up to 40% drug loads. Powder X-ray diffraction analysis indicated that MA was converted to its amorphous phase in all of the formulations. Additionally, FT-IR analysis indicated hydrogen bonding between the drug and the carrier up to 25% of drug loading. SEM images indicated aggregation of MA at over 30% of drug loading. Based on the FT-IR, SEM and dissolution results for the extrudates, two optimized formulations (20% and 25% drug loads) were selected to formulate the orally disintegrating tablets (ODTs). ODTs were successfully prepared with excellent friability and rapid disintegration time in addition to having the desired taste-masking effect. All of the extruded formulations and the ODTs were found to be physically and chemically stable over a period of 6 months at 40°C/75% RH and 12 months at 25°C/60% RH, respectively.

12.
AAPS PharmSciTech ; 16(4): 824-34, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25567525

RESUMEN

The aim of this study was to evaluate a novel combination of Soluplus® and hypromellose acetate succinate (HPMCAS-HF) polymers for solubility enhancement as well as enhanced physicochemical stability of the produced amorphous solid dispersions. This was accomplished by converting the poorly water-soluble crystalline form of carbamazepine into a more soluble amorphous form within the polymeric blends. Carbamazepine (CBZ), a Biopharmaceutics Classification System class II active pharmaceutical ingredient (API) with multiple polymorphs, was utilized as a model drug. Hot-melt extrusion (HME) processing was used to prepare solid dispersions utilizing blends of polymers. Drug loading showed a significant effect on the dissolution rate of CBZ in all of the tested ratios of Soluplus® and HPMCAS-HF. CBZ was completely miscible in the polymeric blends of Soluplus® and HPMCAS-HF up to 40% drug loading. The extrudates were characterized by differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and dissolution studies. DSC and XRD data confirmed the formation of amorphous solid dispersions of CBZ in the polymeric blends of Soluplus® and HPMCAS-HF. Drug loading and release of CBZ was increased with Soluplus® (when used as the primary matrix polymer) when formulations contained Soluplus® with 7-21% (w/w) HPMCAS-HF. In addition, this blend of polymers was found to be physically and chemically stable at 40°C, 75% RH over 12 months without any dissolution rate changes.


Asunto(s)
Metilcelulosa/análogos & derivados , Polietilenglicoles/química , Polivinilos/química , Rastreo Diferencial de Calorimetría , Carbamazepina/química , Cromatografía Líquida de Alta Presión , Calor , Metilcelulosa/química , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría , Difracción de Rayos X
13.
Int J Pharm ; 661: 124407, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38955239

RESUMEN

This study aimed to develop a 3D-printed fixed-dose combination tablet featuring differential release of two drugs using double-melt extrusion (DME). The hot-melt extrusion (HME) process was divided into two steps to manufacture a single filament containing the two drugs. In Step I, a sustained-release matrix of acetaminophen (AAP) was obtained through HME at 190 °C using Eudragit® S100, a pH-dependent polymer with a high glass transition temperature. In Step II, a filament containing both sustained-release AAP from Step I and solubilized ibuprofen (IBF) was fabricated via HME at 110 °C using a mixture of hydroxy propyl cellulose (HPC-LF) and Eudragit® EPO, whose glass transition temperatures make them suitable for use in a 3D printer. A filament manufactured using DME was used to produce a cylindrical 3D-printed fixed-dose combination tablet with a diameter and height of 9 mm. To evaluate the release characteristics of the manufactured filament and 3D-printed tablet, dissolution tests were conducted for 10 h under simulated gastrointestinal tract conditions using the pH jump method with the United States Pharmacopeia apparatus II paddle method at 37 ± 0.5 °C and 50 rpm. Dissolution tests confirmed that both the sustained-release and solubilized forms of AAP and IBF within the filament and 3D-printed tablet exhibited distinct drug-release behaviors. The physicochemical properties of the filament and 3D-printed tablet were confirmed by thermogravimetric analysis, differential scanning calorimetry, powder X-ray diffraction, and Fourier-transform infrared spectroscopy. HME transforms crystalline drugs into amorphous forms, demonstrating their physicochemical stability. Scanning electron microscopy and confocal laser scanning microscopy indicated the presence of sustained AAP granules within the filament, confirming that the drugs were independently separated within the filament and 3D-printed tablets. Finally, sustained-release AAP and solubilized IBF were independently incorporated into the filaments using DME technology. Therefore, a dual-release 3D-printed fixed-dose combination was prepared using the proposed filament.


Asunto(s)
Acetaminofén , Celulosa , Preparaciones de Acción Retardada , Liberación de Fármacos , Ibuprofeno , Impresión Tridimensional , Solubilidad , Comprimidos , Ibuprofeno/química , Ibuprofeno/administración & dosificación , Preparaciones de Acción Retardada/química , Acetaminofén/química , Acetaminofén/administración & dosificación , Celulosa/química , Celulosa/análogos & derivados , Combinación de Medicamentos , Ácidos Polimetacrílicos/química , Tecnología de Extrusión de Fusión en Caliente/métodos , Composición de Medicamentos/métodos , Concentración de Iones de Hidrógeno
14.
Pharmaceutics ; 16(4)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38675128

RESUMEN

This study was tasked with the design of mucoadhesive buccal films (MBFs) containing a peptide drug, leuprolide (LEU), or its diverse nanoparticles (NPs), for enhanced membrane permeability via self-assembled nanonization and deformable behavior. An LEU-oleic acid conjugate (LOC) and its self-assembled NPs (LON) were developed. Additionally, a deformable variant of LON (d-LON) was originally developed by incorporating l-α-phosphatidylcholine into LON as an edge activator. The physicochemical properties of LON and d-LON, encompassing particle size, zeta potential, and deformability index (DI), were evaluated. MBFs containing LEU, LOC, and NPs (LON, d-LON) were prepared using the solvent casting method by varying the ratio of Eudragit RLPO and hydroxypropyl methylcellulose, with propylene glycol used as a plasticizer. The optimization of MBF formulations was based on their physicochemical properties, including in vitro residence time, dissolution, and permeability. The dissolution results demonstrated that the conjugation of oleic acid to LEU exhibited a more sustained LEU release pattern by cleaving the ester bond of the conjugate, as compared to the native LEU, with reduced variability. Moreover, the LOC and its self-assembled NPs (LON, d-LON), equivalent to 1 mg LEU doses in MBF, exhibited an amorphous state and demonstrated better permeability through the nanonization process than LEU alone, regardless of membrane types. The incorporation of lauroyl-L-carnitine into the films as a permeation enhancer synergistically augmented drug permeability. Most importantly, the d-LON-loaded buccal films showed the highest permeability, due to the deformability of NPs. Overall, MBF-containing peptide NPs and permeation enhancers have the potential to replace parenteral LEU administration by improving LEU druggability and patient compliance.

15.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37765137

RESUMEN

The objective of this study was to evaluate the effectiveness of organ-on-chip system investigating simultaneous cellular efficacy and real-time reactive oxygen species (ROS) occurrence of anticancer drug-loaded nanoparticles (NPs) using hepatocarcinoma cells (HepG2) chip system under static and hepatomimicking shear stress conditions (5 dyne/cm2). Then, the role of hepatomimetic shear stress exposed to HepG2 and drug solubility were compared. The highly soluble doxorubicin (DOX) and poorly soluble paclitaxel (PTX) were chosen. Fattigated NPs (AONs) were formed via self-assembly of amphiphilic albumin (HSA)-oleic acid conjugate (AOC). Then, drug-loaded AONs (DOX-AON or PTX-AON) were exposed to a serum-free HepG2 medium at 37 °C and 5% carbon dioxide for 24 h using a real-time ROS sensor chip-based microfluidic system. The cellular efficacy and simultaneous ROS occurrence of free drugs and drug-loaded AONs were compared. The cellular efficacy of drug-loaded AONs varied in a dose-dependent manner and were consistently correlated with real-time of ROS occurrence. Drug-loaded AONs increased the intracellular fluorescence intensity and decreased the cellular efficacy compared to free drugs under dynamic conditions. The half-maximal inhibitory concentration (IC50) values of free DOX (13.4 µg/mL) and PTX (54.44 µg/mL) under static conditions decreased to 11.79 and 38.43 µg/mL, respectively, under dynamic conditions. Furthermore, DOX- and PTX-AONs showed highly decreased IC50 values of 5.613 and 21.86 µg/mL, respectively, as compared to free drugs under dynamic conditions. It was evident that cellular efficacy and real-time ROS occurrence were well-correlated and highly dependent on the drug-loaded nanostructure, drug solubility and physiological shear stress.

16.
Heliyon ; 9(12): e23091, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38144296

RESUMEN

The aim of this study was to design a novel matrix tablet with enhanced dissolution and pH-independent controlled release of sildenafil citrate (SIL), a drug with pH-dependent solubility, by using solid dispersions (SDs) and polyelectrostatic interactions. SIL-loaded SDs were prepared using various polymeric carriers such as poloxamer 188, poloxamer 407, Soluplus®, polyvinylpyrrolidone (PVP) K 12, and PVP K 17 by the solvent evaporation method. Among these polymers, Soluplus® was found to be the most effective in SDs for enhancing the drug dissolution over 6 h in pH 6.8 intestinal fluid. SIL was well dispersed in Soluplus®-based SDs in an amorphous form. When the Soluplus®-based SDs were added in the tablet containing positively charged chitosan and negatively charged Eudragit® L100, the drug release rate was further modulated in a controlled manner. The charge density of the tablet was higher at pH 6.8 than at pH 1.2 due to the polyelectrostatic interaction between chitosan and Eudragit® L100. This interaction could provide a pH-independent controlled release of SIL. Our study demonstrates that a combinatory approach of Soluplus®-based SDs and polyelectrostatic interactions can improve the dissolution and pH-independent release performance of SIL. This approach could be a promising pharmaceutical strategy to design a matrix tablet of poorly water-soluble drugs for the enhanced bioavailability.

17.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35890191

RESUMEN

The objective of this study was to design and evaluate an orodispersible film (ODF) composed of aripiprazole (ARP), prepared using a conventional solvent casting technique, and to fuse a three-dimensional (3D) printing technique with a hot-melt extrusion (HME) filament. Klucel® LF (hydroxypropyl cellulose, HPC) and PE-05JPS® (polyvinyl alcohol, PVA) were used as backbone polymers for 3D printing and solvent casting. HPC-, PVA-, and ARP-loaded filaments were applied for 3D printing using HME. The physicochemical and mechanical properties of the 3D printing filaments and films were optimized based on the composition of the polymers and the processing parameters. The crystalline states of drug and drug-loaded formulations were investigated using differential scanning calorimetry (DSC) and powder X-ray diffraction (XRD). The dissolution and disintegration of the 3D-printed films were faster than those of solvent-cast films. HPC-3D printed film was fully disintegrated within 45 ± 3.5 s. The dissolution rate of HPC films reached 80% within 30 min at pH 1.2 and pH 4.0 USP buffer. There was a difference in the dissolution rate of about 5 to 10% compared to PVA films at the same sampling time. The root mean square of the roughness (Rq) values of each sample were evaluated using atomic force microscopy. The higher the Rq value, the rougher the surface, and the larger the surface area, the more salivary fluid penetrated the film, resulting in faster drug release and disintegration. Specifically, The HPC 3D-printed film showed the highest Rq value (102.868 nm) and average surface roughness (85.007 nm). The puncture strength of 3D-printed films had desirable strength with HPC (0.65 ± 0.27 N/mm2) and PVA (0.93 ± 0.15 N/mm2) to prevent deformation compared to those of marketed film products (over 0.34 N/mm2). In conclusion, combining polymer selection and 3D printing technology could innovatively design ODFs composed of ARP to solve the unmet medical needs of psychiatric patients.

18.
Curr Drug Deliv ; 19(5): 520-533, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34420504

RESUMEN

BACKGROUND: Hydrophilic Hydroxypropyl Methylcellulose (HPMC) matrix tablets are the standard role model of the oral controlled-release formulation. Nevertheless, the HPMC kinetics for the mechanistic understanding of drug release and hydrodynamic behaviors are rarely investigated. This study aims to investigate the release behaviors of both HPMC and paracetamol (model drug) from the hydrophilic matrix tablet. METHODS: Two different viscosity grades of HPMC were used (Low viscosity: 6 cps, High viscosity: 4,000 cps). Three different ratios of drug/HPMC (H:38.08%, M:22.85%, and L:15.23% (w/w) of HPMC amounts in total weight) matrix tablets were prepared by wet granulation technique. The release profiles of the drug and HPMC in a matrix tablet were quantitatively analyzed by HPLC and 1H-Nuclear Magnetic Resonance (NMR) spectroscopy. The hydrodynamic changes of HPMC were determined by the gravimetric behaviors such as swelling and erosion rates, gel layer thickness, front movement data,and distributive Near-Infrared (NIR) chemical imaging of HPMC in a matrix tablet during the dissolution process. RESULTS: High viscosity HPMC tablets showed slower release of HPMC than the release rate of drug, suggesting that drug release preceded polymer release.Different hydration phenomenon was qualitatively identified and corresponded to the release profiles. The release behaviors of HPMC and drug in the tablet could be distinguished with the significant difference with fitted dissolution kinetics model (Low viscosity HPMC 6cps; Korsmeyer-Peppas model, High viscosity HPMC 4000cps; Hopfenberg model, Paracetamol; Weibull model) according to the weight of ingredients and types of HPMC. CONCLUSION: The determination of HPMC polymer release correlating with drug release, hydrodynamic behavior, and NIR chemical imaging of HPMC can provide new insights into the drug release- modulating mechanism in the hydrophilic matrix system.


Asunto(s)
Acetaminofén , Hidrodinámica , Preparaciones de Acción Retardada/química , Liberación de Fármacos , Derivados de la Hipromelosa/química , Cinética , Metilcelulosa/química , Polímeros , Solubilidad , Comprimidos , Viscosidad
19.
Pharm Res ; 28(10): 2353-78, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21553168

RESUMEN

In addition to a number of highly soluble drugs, most new chemical entities under development are poorly water-soluble drugs generally characterized by an insufficient dissolution rate and a small absorption window, leading to the low bioavailability. Controlled-release (CR) formulations have several potential advantages over conventional dosage forms, such as providing a uniform and prolonged therapeutic effect to improve patient compliance, reducing the frequency of dosing, minimizing the number of side effects, and reducing the strength of the required dose while increasing the effectiveness of the drug. Solid dispersions (SD) can be used to enhance the dissolution rate of poorly water-soluble drugs and to sustain the drug release by choosing an appropriate carrier. Thus, a CR-SD comprises both functions of SD and CR for poorly water-soluble drugs. Such CR dosage forms containing SD provide an immediately available dose for an immediate action followed by a gradual and continuous release of subsequent doses to maintain the plasma concentration of poorly water-soluble drugs over an extended period of time. This review aims to summarize all currently known aspects of controlled release systems containing solid dispersions, focusing on the preparation methods, mechanisms of action and characterization of physicochemical properties of the system.


Asunto(s)
Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/química , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/química , Humanos , Solubilidad
20.
Chem Pharm Bull (Tokyo) ; 59(7): 844-50, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21720034

RESUMEN

The purpose of this study was to investigate the effects of alkalizers in dissolution rate and crystal structure of valsartan (VAL) in Poloxamer 407 (POX)-based solid dispersions (SD). VAL, a poorly-water soluble drug was selected as a model drug because of its low solubility at low pH. The POX-based SDs containing alkalizers (Na2CO3, MgO, meglumine and arginine) were prepared by melting method. The dissolution tests were performed using the United States Pharmacopeia (USP) paddle II method in enzyme-free simulated gastric fluid (pH 1.2) for 2 h. Microenvironmental pH (pH(M)) was examined potentiometrically by using a surface pH electrode. Dissolution rate of SD incorporating Na2CO3 was drastically increased. The differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) data indicated that crystalline structure of VAL in SD was transformed to amorphous form by the addition of alkalizers but could not explain the differences in the dissolution rates. The molecular interaction between VAL and Na2CO3 was observed in the Fourier transform infrared spectroscopy (FT-IR) spectra by the shift of C=O band from 1732 to 1719 cm⁻¹ and the disappearance of carbonyl group at 1598 cm⁻¹. Furthermore, Na2CO3 efficiently modulated pH(M) by providing a favorable microenvironment for drug dissolution. A combination of SD method and use of alkalizer is a promising approach to modulate release rate of poorly water-soluble and ionizable drug with an aid of changes of drug crystallinity, molecular interaction and pH(M).


Asunto(s)
Poloxámero/química , Tetrazoles/química , Valina/análogos & derivados , Rastreo Diferencial de Calorimetría , Carbonatos/química , Química Farmacéutica , Electrodos , Concentración de Iones de Hidrógeno , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Valina/química , Valsartán , Agua/química , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA