RESUMEN
OBJECTIVE: Chronic periodontitis is caused by multiple risk factors. To predict chronic periodontitis in older people, we evaluated the association between a combination of major periodontal pathogens and salivary biomarkers and the presence of periodontitis. METHODS: Stimulated saliva samples were collected to analyze the prevalence of Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, and Prevotella intermedia, as well as four biomarkers: interleukin (IL)-1ß, IL-6, tumor necrosis factor-α (TNF-α), and prostaglandin E2 (PGE2). A total of 201 Japanese patients were recruited. Oral examinations ware performed to determine chronic periodontitis as measured by Community Periodontal Index. The sociodemographic and behavioral characteristics were also obtained, and the parameters were adjusted as potential confounders to employ statistical models. RESULTS: The odds ratio (OR) for the presence of P. gingivalis and the third tertile level of IL-1ß as compared with the absence of P. gingivalis and the lowest tertile of IL-1ß was highest in individuals with periodontitis (OR = 13.98; 95% confidence interval [CI] 3.87-50.52) with the best level (0.79) of area under the curve (AUC) based on the receiver operating characteristic curve. The OR for the presence of P. gingivalis and the third tertile of PGE2 was 7.76 (CI 1.89-31.91) with an AUC of 0.78. The coexistence of more than two periodontal bacteria and the third tertile of PGE2 was also strongly associated with chronic periodontitis (OR = 9.23, 95% CI 2.38-35.79) with an AUC of 0.76. CONCLUSIONS: The combined information of the presence of P. gingivalis in stimulated saliva, and higher levels of salivary IL-1ß may play a vital role in the detection and prediction of chronic periodontitis in older adults.
Asunto(s)
Periodontitis Crónica , Anciano , Aggregatibacter actinomycetemcomitans , Bacteroides , Biomarcadores , Periodontitis Crónica/diagnóstico , Periodontitis Crónica/microbiología , Dinoprostona , Humanos , Porphyromonas gingivalis , Treponema denticolaRESUMEN
BACKGROUND: One of the most interesting issues in obesity research is why certain humans are obesity-prone (OP) while others are obesity-resistant (OR) upon exposure to a high-calorie diet. However, the pathways responsible for these phenotypic differences are still largely unknown. METHODS: In order to discover marker molecules determining susceptibility and/or resistance to obesity in response to high fat diet (HFD) or anti-obesity herbal medicine (TH), we conducted comparative proteomic analysis of white adipose tissue (WAT) from OP, OR, as well as TH-treated mice. RESULTS: OP mice fed HFD gained approximately 33% more body weight than OR mice, and TH significantly reduced body weight gain in HFD-fed mice by 30%. These mice were further subjected to proteomic analysis using two-dimensional electrophoresis (2-DE) combined with matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS). Proteomic data revealed 59 spots that were differentially regulated from a total of 1,045 matched spots, and 57 spots of these were identified as altered WAT proteins between OP and OR mice by peptide mass finger printing. Interestingly, 45 proteins were similarly regulated in OR mice in response to TH treatment. Of these, 10 proteins have already been recognized in the context of obesity; however, other proteins involved in obesity susceptibility or resistance were identified for the first time in the present study. CONCLUSION: Our results suggest that TH actively contributed to body weight reduction in HFD-fed obese mice by altering protein regulation in WAT, and it was also found that TH-responsive proteins can be used as potent molecules for obesity treatment.
Asunto(s)
Tejido Adiposo Blanco/efectos de los fármacos , Fármacos Antiobesidad/farmacología , Dieta Alta en Grasa , Proteoma/análisis , Tejido Adiposo Blanco/metabolismo , Animales , Fármacos Antiobesidad/química , Electroforesis en Gel Bidimensional , Medicina de Hierbas , Masculino , Redes y Vías Metabólicas , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/metabolismo , Obesidad/patología , Proteómica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización DesorciónRESUMEN
Chronic hepatitis is a major cause of liver cancer, so earlier treatment of hepatitis might be reducing liver cancer incidence. Hepatitis can be induced in mice by treatment with Concanavalin A (Con A); the resulting liver injury causes significant CD4(+) T cell activation and infiltration. In these T cells, Roquin, a ring-type E3 ubiquitin ligase, is activated. To investigate the role of Roquin, we examined Con A-induced liver injury and T cell infiltration in transgenic (Tg) mice overexpressing Roquin specifically in T cells. In Roquin Tg mice, Con A treatment caused greater increases in both the levels of liver injury enzymes and liver tissue apoptosis, as revealed by TUNEL and H&E staining, than wild type (WT) mice. Further, Roquin Tg mice respond to Con A treatment with greater increases in the T cell population, particularly Th17 cells, though Treg cell counts are lower. Roquin overexpression also enhances increases in pro-inflammatory cytokines, including IFN-γ, TNF-α and IL-6, upon liver injury. Furthermore, Roquin regulates the immune response and apoptosis in Con A induced hepatitis via STATs, Bax and Bcl2. These findings suggest that over-expression of Roquin exacerbates T-cell mediated hepatitis.
Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Hepatocitos/metabolismo , Regiones Promotoras Genéticas , Células Th17/metabolismo , Ubiquitina-Proteína Ligasas/genética , Animales , Apoptosis , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Concanavalina A , Femenino , Regulación de la Expresión Génica , Hepatocitos/patología , Interferón gamma/biosíntesis , Interferón gamma/metabolismo , Interleucina-6/biosíntesis , Interleucina-6/metabolismo , Activación de Linfocitos , Recuento de Linfocitos , Ratones , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/patología , Células Th17/patología , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
We propose a compact wearable glove capable of estimating both the finger bone lengths and the joint angles of the wearer with a simple stretch-based sensing mechanism. The soft sensing glove is designed to easily stretch and to be one-size-fits-all, both measuring the size of the hand and estimating the finger joint motions of the thumb, index, and middle fingers. The system was calibrated and evaluated using comprehensive hand motion data that reflect the extensive range of natural human hand motions and various anatomical structures. The data were collected with a custom motion-capture setup and transformed into the joint angles through our post-processing method. The glove system is capable of reconstructing arbitrary and even unconventional hand poses with accuracy and robustness, confirmed by evaluations on the estimation of bone lengths (mean error: 2.1 mm), joint angles (mean error: 4.16°), and fingertip positions (mean 3D error: 4.02 mm), and on overall hand pose reconstructions in various applications. The proposed glove allows us to take advantage of the dexterity of the human hand with potential applications, including but not limited to teleoperation of anthropomorphic robot hands or surgical robots, virtual and augmented reality, and collection of human motion data.
Asunto(s)
Dedos , Mano , Dispositivos Electrónicos Vestibles , Humanos , Mano/fisiología , Dedos/fisiología , Articulaciones de los Dedos/fisiología , Movimiento/fisiología , Fenómenos Biomecánicos , Rango del Movimiento Articular/fisiologíaRESUMEN
Hydrogen separation is an important step for the utilization of hydrogen energy. Metallic alloys, such as vanadium-nickel, are potential hydrogen separation materials. Due to the strong propensity of vanadium to form oxides and hydrides, vanadium alloy has a lower hydrogen permeability, and it is difficult to maintain the permeability over time. Therefore, special preparation processes such as Pd coating have been suggested for hydrogen separation vanadium-based membranes. However, aside from the prohibitive price of palladium, the interdiffusion of palladium and vanadium makes the coated membrane inviable to be used at a high temperature. Thermal treatment with inert gas was investigated in this study to assess the applicability of the vanadium alloy without palladium coating for hydrogen separation and clarify the mechanism behind the thermal treatment. Argon is inert with vanadium and displayed permeability recovery after 43 h thermal treatment, but the permeability declined under certain conditions. In contrast, nitrogen is known to interact with vanadium and the hydrogen permeability was maintained at a level lower than the test with argon. Given that nitrogen can compete with hydrogen for the active sites on vanadium, nitrogen might hinder hydrogen adsorption and hydride formation, whereas argon reduced the partial pressure of hydrogen during the thermal treatment, enhancing the driving force of hydrogen desorption. In the X-ray diffraction spectrum, vanadium hydrides and oxides were confirmed after hydrogen permeation and thermal treatment. In the X-ray photoelectron spectroscopy data, oxygen was a dominant element due to vanadium oxides and adsorbed nitrogen was also observed. According to binding energy shifts of nitrogen, nitrogen used for thermal treatment might substitute or compete for active sites with adsorbed nitrogen and hydrogen, existing in vanadium lattice. Although thermal treatment can be used to recover hydrogen permeability, the alloy cannot be recovered as hydrogen-free. However, results demonstrate the potential of thermal treatment to complement an uncoated vanadium alloy for a hydrogen separation membrane.
RESUMEN
Controlling built-in potential can enhance the photoresponse performance of self-powered photodetectors. Among the methods for controlling the built-in potential of self-powered devices, postannealing is simpler, more efficient, and less expensive than ion doping and alternative material research. In this study, a CuO film was deposited on a ß-Ga2O3 epitaxial layer via reactive sputtering with an FTS system, and a self-powered solar-blind photodetector was fabricated through a CuO/ß-Ga2O3 heterojunction and postannealed at different temperatures. The postannealing process reduced the defects and dislocations at the interface between each layer and affected the electrical and structural properties of the CuO film. After postannealing at 300 °C, the carrier concentration of the CuO film increased from 4.24 × 1018 to 1.36 × 1020 cm-3, bringing the Fermi level toward the valence band of the CuO film and increasing the built-in potential of the CuO/ß-Ga2O3 heterojunction. Thus, the photogenerated carriers were rapidly separated, increasing the sensitivity and response speed of the photodetector. The as-fabricated photodetector with 300 °C postannealing exhibited a photo-to-dark current ratio of 1.07 × 103; responsivity and detectivity of 30.3 mA/W and 1.10 × 1012 Jones, respectively; and fast rise and decay times of 12 ms and 14 ms, respectively. After three months of storage in an open-air space, the photocurrent density of the photodetector was maintained, indicating good stability with aging. These results suggest that the photocharacteristics of CuO/ß-Ga2O3 heterojunction self-powered solar-blind photodetectors can be improved through built-in potential control using a postannealing process.
RESUMEN
A Ag:AZO electrode was used as an electrode for a self-powered solar-blind ultraviolet photodetector based on a Ag2O/ß-Ga2O3 heterojunction. The Ag:AZO electrode was fabricated by co-sputtering Ag and AZO heterogeneous targets using the structural characteristics of a Facing Targets Sputtering (FTS) system with two-facing targets, and the electrical, crystallographic, structural, and optical properties of the fabricated thin film were evaluated. A photodetector was fabricated and evaluated based on the research results that the surface roughness of the electrode can reduce the light energy loss by reducing the scattering and reflectance of incident light energy and improving the trapping phenomenon between interfaces. The thickness of the electrodes was varied from 20 nm to 50 nm depending on the sputtering time. The optoelectronic properties were measured under 254 nm UV-C light, the on/off ratio of the 20 nm Ag:AZO electrode with the lowest surface roughness was 2.01 × 108, and the responsivity and detectivity were 56 mA/W and 6.99 × 1011 Jones, respectively. The Ag2O/ß-Ga2O3-based solar-blind photodetector with a newly fabricated top electrode exhibited improved response with self-powered characteristics.
RESUMEN
Chewing ability is also related to activities of daily living (ADLs) and nutritional status; however, these associations have not been firmly established. We examined chewing ability as a predictor variable and explored its relationship with cognitive functioning as mediated by ADLs and nutritional status data were collected by face-to-face interviews. Patients were receiving home healthcare service in Mun-gyeong city, Gyung-buk, Korea. Participants comprised 295 patients aged 81.35 ± 6.70 years. Structural equation modeling (SEM) was performed using AMOS 18.0 (SPSS Inc., Chicago, IL, USA). The model fit was based on absolute fit index and incremental fit index. Data were collected to assess cognitive functioning (using the Korean version of the Mini-Mental Status Examination for dementia screening (MMSE-DS)), ADL, a mini-nutritional assessment (MNA) questionnaire, and a chewing ability test. Participants with better chewing ability had significantly better cognitive functioning, ADLs, and nutritional status (p < 0.001). Chewing ability directly affected cognitive functioning and indirectly affected how ADLs and MNA affected MMSE-DS. Chewing ability is an important factor influencing the cognitive functioning of elderly adults in Korea, both directly and indirectly through mediating variables such as nutritional status and ADLs. Efforts to help older adults maintain their chewing ability are necessary for preventing cognitive impairment.
Asunto(s)
Actividades Cotidianas , Disfunción Cognitiva , Anciano , Anciano de 80 o más Años , Cognición , Humanos , Masticación , Estado NutricionalRESUMEN
Self-powered deep-ultraviolet photodetectors have received considerable attention in recent years because of their efficiency, reliability, and various applications in civilian and military fields. Herein, a Ag/Ag2O layer is continuously deposited on a ß-Ga2O3 epitaxial layer by a facing target sputtering system without opening the chamber, which has an advantage in time and cost. A p-n junction photodetector was constructed through the Ag2O/ß-Ga2O3 heterojunction and by varying the thickness of the Ag film, which was controlled by the sputtering time. The effect of top electrode thickness on the photoresponse characteristics of photodetectors was studied. Because thin Ag films have low surface roughness, indicating low optical loss and good interfacial conditions, photodetectors using a thin Ag film as the top electrode exhibit high photoresponsivity. However, Ag films that were thinner than the threshold thickness, which is the minimum thickness required to form a continuous, homogeneous surface film, exhibited rather low performance owing to the high reflection and scattering caused by the inhomogeneous surface morphology. The as-fabricated photodetector with a 20 nm Ag film presents a high on/off ratio of 3.43 × 108, responsivity and detectivity of 25.65 mA/W and 6.10 × 1011 Jones, respectively, and comparable rise and decay times of 108 and 80 ms, respectively. Additionally, even after three months of storage in an ambient environment, the photoresponse of the photodetector was maintained, indicating good stability in air. These results suggest that Ag2O/ß-Ga2O3 heterojunction-based photodetectors with thin Ag films can be used in various applications requiring deep-ultraviolet detection without an external power supply.
RESUMEN
Aceclofenac controlled-release (CR) is a once-a-day tablet with 200 mg of aceclofenac, and is bioequivalent to conventional aceclofenac. However, its safety in humans has not been well studied in Korea. Therefore, we aimed to evaluate the overall incidence and patterns of adverse events (AEs), the effectiveness of aceclofenac CR, and the differences in incidence rates of the AEs based on each patient's baseline charateristics. This study was conducted on patients receiving aceclofenac CR in clinical practice at each investigational institution to treat musculoskeletal pain and inflammation. The subjects were administered one tablet of aceclofenac CR (200 mg once-a-day) and were observed for 4 weeks post-administration. Factors affecting the occurrence of AEs were evaluated, and the Visual Analogue Scale (VAS) was used to measure the pain intensity. Among 14,543 subjects, the incidence rate of AEs was 0.86%, and that of adverse drug reactions was 0.74%. No serious AEs and unexpected adverse drug reactions were monitored. The incidence rates of AEs were significantly higher in females, inpatient treatment, individuals with concurrent disorders, and those receiving concomitant medications, respectively (all P < 0.05). Four weeks post-using aceclofenac CR, the mean changes in VAS was significantly decreased compared to prior administration. The overall clinical efficacy rate was 91.63%. This study confirmed that no severe adverse reactions were observed for aceclofenac CR exceeding those previously reported for safety results of conventional formulation of this drug in routine clinical practice settings. The use of aceclofenac CR might not violate the previously reported information on the safety and effectiveness of aceclofenac.
Asunto(s)
Antiinflamatorios no Esteroideos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Antiinflamatorios no Esteroideos/efectos adversos , Preparaciones de Acción Retardada , Diclofenaco/efectos adversos , Diclofenaco/análogos & derivados , Método Doble Ciego , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Femenino , Humanos , Comprimidos , Resultado del TratamientoRESUMEN
In this study, a high-photoresponsivity self-powered deep ultraviolet (DUV) photodetector based on an Ag2O/ß-Ga2O3 heterojunction was fabricated by depositing a p-type Ag2O thin film onto an n-type ß-Ga2O3 layer. The device characteristics after post-annealing at temperatures ranging from 0 to 400 °C were investigated. Our DUV devices exhibited typical rectification characteristics. At a post-annealing temperature of 300 °C, the as-fabricated device had a low leakage current of 4.24 × 10-11 A, ideality factor of 2.08, and a barrier height of 1.12 eV. Moreover, a high photo-responsivity of 12.87 mA/W was obtained at a 100 µW/cm2 light intensity at a 254 nm wavelength at zero bias voltage, the detectivity was 2.70 × 1011 Jones, and the rise and fall time were 29.76, 46.73 ms, respectively. Based on these results, the Ag2O/ß-Ga2O3 heterojunction photodetector operates without an externally applied voltage and has high responsivity, which will help in the performance improvement of ultraviolet sensing systems.
RESUMEN
Age-related decline in cognitive function is a major challenge in geriatric healthcare. A possible explanation is that the tooth loss or low chewing ability is at cause of cognitive impairment or dementia. The study aimed to investigate the potential relationship between chewing ability and cognitive function in the elderly. A total of 563 participants aged 65 years or over residing in urban and rural areas of South Korea were surveyed. The chewing ability was measured by objectively measurable indications such as the number of remaining teeth, denture status, color-changeable gum, and occlusal balance using T-Scan III®. The cognitive function was measured by the Korean version of Mini-Mental State Examination-Dementia Screening (MMSE-DS) and a score of 24 or more (out of 30) indicates a normal cognition, below 23 indicates cognitive impairment. The association between socio-demographic factors, chewing ability factors, and cognitive function demonstrated statistically significant results. When comparing the denture status and chewing ability, the proportion of need denture group had fewer remaining teeth and anterior balanced occlusion. The average number of remaining teeth in anterior balanced occlusion with cognitive impairment was 11.2 compared to posterior balanced occlusion with the normal cognition 19.2. A multiple linear regression analysis declared a significant correlation between number of remaining teeth, denture status, occlusal balance, and cognitive function. Results of the present study revealed objectively measurable indications are suitable for chewing ability assessment and correlated with cognitive function.
Asunto(s)
Disfunción Cognitiva , Pérdida de Diente , Anciano , Cognición , Disfunción Cognitiva/epidemiología , Humanos , Masticación , República de Corea/epidemiología , Pérdida de Diente/epidemiologíaRESUMEN
Increased hepatic gluconeogenesis is one of the main contributors to the development of type 2 diabetes. Recently, it has been reported that growth arrest and DNA damage-inducible 45 beta (GADD45ß) is induced under both fasting and high-fat diet (HFD) conditions that stimulate hepatic gluconeogenesis. Here, this study aimed to establish the molecular mechanisms underlying the novel role of GADD45ß in hepatic gluconeogenesis. Both whole-body knockout (KO) mice and adenovirus-mediated knockdown (KD) mice of GADD45ß exhibited decreased hepatic gluconeogenic gene expression concomitant with reduced blood glucose levels under fasting and HFD conditions, but showed a more pronounced effect in GADD45ß KD mice. Further, in primary hepatocytes, GADD45ß KD reduced glucose output, whereas GADD45ß overexpression increased it. Mechanistically, GADD45ß did not affect Akt-mediated forkhead box protein O1 (FoxO1) phosphorylation and forskolin-induced cAMP response element-binding protein (CREB) phosphorylation. Rather it increased FoxO1 transcriptional activity via enhanced protein stability of FoxO1. Further, GADD45ß colocalized and physically interacted with FoxO1. Additionally, GADD45ß deficiency potentiated insulin-mediated suppression of hepatic gluconeogenic genes, and it were impeded by the restoration of GADD45ß expression. Our finding demonstrates GADD45ß as a novel and essential regulator of hepatic gluconeogenesis. It will provide a deeper understanding of the FoxO1-mediated gluconeogenesis.
RESUMEN
Aging is characterized by a progressive decline or loss of physiological functions, leading to increased susceptibility to disease or death. Several aging hallmarks, including genomic instability, cellular senescence, and mitochondrial dysfunction, have been suggested, which often lead to the numerous aging disorders. The periodontium, a complex structure surrounding and supporting the teeth, is composed of the gingiva, periodontal ligament, cementum, and alveolar bone. Supportive and protective roles of the periodontium are very critical to sustain life, but the periodontium undergoes morphological and physiological changes with age. In this review, we summarize the current knowledge of molecular and cellular physiological changes in the periodontium, by focusing on soft tissues including gingiva and periodontal ligament.
RESUMEN
In current times, obesity is a major health problem closely associated with metabolic disease such as diabetes, dyslipidemia, and cardiovascular disease. The direct cause of obesity is known as an abnormal increase in fat cell size and the adipocyte pool. Hyperplasia, the increase in number of adipocytes, results from adipogenesis in which preadipocytes differentiate into mature adipocytes. Adipogenesis is regulated by local and systemic cues that alter transduction pathways and subsequent control of adipogenic transcription factors. Therefore, the regulation of adipogenesis is an important target for preventing obesity. Myonectin, a member of the CTRP family, is a type of myokine released by skeletal muscle cells. Although several studies have shown that myonectin is associated with lipid metabolism, the role of myonectin during adipogenesis is not known. Here, we demonstrate the role of myonectin during adipocyte differentiation of 3T3-L1 cells. We found that myonectin inhibits the adipogenesis of 3T3-L1 preadipocytes with a reduction in the expression of adipogenic transcription factors such as C/EBPα, ß and PPARγ. Furthermore, we show that myonectin has an inhibitory effect on adipogenesis through the regulation of the p38 MAPK pathway and CHOP. These findings suggest that myonectin may be a novel therapeutic target for the prevention of obesity. [BMB Reports 2021; 54(2): 124-129].
Asunto(s)
Adipocitos/metabolismo , Adiponectina/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Células 3T3-L1 , Adipogénesis , Animales , Células Cultivadas , RatonesRESUMEN
The authors have recently reported the enhanced thermal stability of silver nanowire (AgNW) network transparent electrodes by electrodeposition method [1]. AgNW networks are known to break into droplets at elevated temperatures (spherodization temperature) that are still much lower than the bulk Ag melting temperature. This phenomenon is known as Rayleigh instability. As the diameter of individual AgNW in the network increases by electrodeposited Ag on the AgNW surface, the thermal stability of AgNW network can be enhanced. Here, we provide the data on the spherodization temperature depending on AgNW diameter. We also report the calculated activation energy required to induce the spherodization of AgNW network.
RESUMEN
Silver nanowire (AgNW) networks have demonstrated high optical and electrical properties, even better than those of indium tin oxide thin films, and are expected to be a next-generation transparent conducting electrode (TCE). Enhanced electrical and optical properties are achieved when the diameter of the AgNWs in the network is fairly small, that is, typically less than 30 nm. However, when AgNWs with such small diameters are used in the network, stability issues arise. One method to resolve the stability issues is to increase the diameter of the AgNWs, but the use of AgNWs with large diameters has the disadvantage of causing a rough surface morphology. In this work, we resolve all of the aforementioned issues with AgNW TCEs by the electrodeposition of Ag onto as-spin-coated thin AgNW TCEs. The electrodeposition of Ag offers many advantages, including the precise adjustment of the AgNW diameter and wire-to-wire welding to improve the junction conductance while minimizing the increase in protrusion height because of the overlap of AgNWs upon increasing the diameter. In addition, Ag electrodeposition on AgNW TCEs can provide higher conductance than that of as-spin-coated AgNW TCEs at the same transparency because of the reduced junction resistance, which generates a superior figure of merit. We applied the electrodeposited (ED) AgNW network to a Cu(In,Ga)Se2 thin-film solar cell and compared the device performance to a device with a standard sputtered transparent conducting oxide (TCO). The cell fabricated by the electrodeposition method showed nearly equal performance to that of a cell with the sputtered TCO. We expect that ED AgNW networks can be used as high-performance and robust TCEs for various optoelectronic applications.
RESUMEN
Ginsenosides, the major active ingredients of ginseng and other plants of the genus Panax, have been used as natural medicines in the East for a long time; in addition, their popularity in the West has increased owing to their various beneficial pharmacological effects. There is therefore a wealth of literature regarding the pharmacological effects of ginsenosides. In contrast, there are few comprehensive studies that investigate their pharmacokinetic behaviors. This is because ginseng contains the complicated mixture of herbal materials as well as thousands of constituents with complex chemical properties, and ginsenosides undergo multiple biotransformation processes after administration. This is a significant issue as pharmacokinetic studies provide crucial data regarding the efficacy and safety of compounds. Moreover, there have been many difficulties in the development of the optimal dosage regimens of ginsenosides and the evaluation of their interactions with other drugs. Therefore, this review details the pharmacokinetic properties and profiles of ginsenosides determined in various animal models administered through different routes of administration. Such information is valuable for designing specialized delivery systems and determining optimal dosing strategies for ginsenosides.
RESUMEN
Ischaemic heart disease (IHD) is the leading cause of death worldwide. Although myocardial cell death plays a significant role in myocardial infarction (MI), its underlying mechanism remains to be elucidated. To understand the progression of MI and identify potential therapeutic targets, we performed tandem mass tag (TMT)-based quantitative proteomic analysis using an MI mouse model. Gene ontology (GO) analysis and gene set enrichment analysis (GSEA) revealed that the glutathione metabolic pathway and reactive oxygen species (ROS) pathway were significantly downregulated during MI. In particular, glutathione peroxidase 4 (GPX4), which protects cells from ferroptosis (an iron-dependent programme of regulated necrosis), was downregulated in the early and middle stages of MI. RNA-seq and qRT-PCR analyses suggested that GPX4 downregulation occurred at the transcriptional level. Depletion or inhibition of GPX4 using specific siRNA or the chemical inhibitor RSL3, respectively, resulted in the accumulation of lipid peroxide, leading to cell death by ferroptosis in H9c2 cardiomyoblasts. Although neonatal rat ventricular myocytes (NRVMs) were less sensitive to GPX4 inhibition than H9c2 cells, NRVMs rapidly underwent ferroptosis in response to GPX4 inhibition under cysteine deprivation. Our study suggests that downregulation of GPX4 during MI contributes to ferroptotic cell death in cardiomyocytes upon metabolic stress such as cysteine deprivation.
Asunto(s)
Regulación hacia Abajo , Ferroptosis , Regulación Enzimológica de la Expresión Génica , Infarto del Miocardio/enzimología , Miocitos Cardíacos/enzimología , Fosfolípido Hidroperóxido Glutatión Peroxidasa/biosíntesis , Animales , Línea Celular , Humanos , Infarto del Miocardio/patología , Miocitos Cardíacos/patología , Proteómica , Ratas , Ratas Sprague-DawleyRESUMEN
Phosphorus removal has been studied for decades to reduce the environmental impact of phosphorus in natural waterbodies. Slag has been applied for the phosphorus removal by several mechanisms. In this study, sodium hydroxide coating was applied on the slag surface to enhance the efficiency of precipitation-coagulation process. In the batch test, it was found that the capacity of the slag to maintain high pH decreases with increasing its exposure time to the aqueous solution. In the column test, the coarse-grained coated slag showed higher phosphorus removal efficiency than the fine-grained uncoated slag. The coated slag maintained pH higher than uncoated slag and, accordingly, the removal efficiency of phosphorus was higher. Especially, when pH was less than 8, the removal efficiency decreased significantly. However, coated slag provided an excess amount of aluminum and sodium. Thus, a return process to reuse aluminum and sodium as a coagulant was introduced. The return process yields longer lifespan of slag with higher phosphorus removal and lower concentration of cations in the effluent. With the return process, the phosphorus removal efficiency was kept higher than 60% until 150 bed volumes; meanwhile, the efficiency without return process became lower than 60% at 25 bed volumes.