Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 253
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Semin Immunol ; 54: 101513, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-34836771

RESUMEN

Our understanding of the biological role of the ßc family of cytokines has evolved enormously since their initial identification as bone marrow colony stimulating factors in the 1960's. It has become abundantly clear over the intervening decades that this family of cytokines has truly astonishing pleiotropic capacity, capable of regulating not only hematopoiesis but also many other normal and pathological processes such as development, inflammation, allergy and cancer. As noted in the current pandemic, ßc cytokines contribute to the cytokine storm seen in acutely ill COVID-19 patients. Ongoing studies to discover how these cytokines activate their receptor are revealing insights into the fundamental mechanisms that give rise to cytokine pleiotropy and are providing tantalizing glimpses of how discrete signaling pathways may be dissected for activation with novel ligands for therapeutic benefit.


Asunto(s)
COVID-19 , Objetivos , Humanos , SARS-CoV-2
2.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35115399

RESUMEN

The RecQ-like helicase BLM cooperates with topoisomerase IIIα, RMI1, and RMI2 in a heterotetrameric complex (the "Bloom syndrome complex") for dissolution of double Holliday junctions, key intermediates in homologous recombination. Mutations in any component of the Bloom syndrome complex can cause genome instability and a highly cancer-prone disorder called Bloom syndrome. Some heterozygous carriers are also predisposed to breast cancer. To understand how the activities of BLM helicase and topoisomerase IIIα are coupled, we purified the active four-subunit complex. Chemical cross-linking and mass spectrometry revealed a unique architecture that links the helicase and topoisomerase domains. Using biochemical experiments, we demonstrated dimerization mediated by the N terminus of BLM with a 2:2:2:2 stoichiometry within the Bloom syndrome complex. We identified mutations that independently abrogate dimerization or association of BLM with RMI1, and we show that both are dysfunctional for dissolution using in vitro assays and cause genome instability and synthetic lethal interactions with GEN1/MUS81 in cells. Truncated BLM can also inhibit the activity of full-length BLM in mixed dimers, suggesting a putative mechanism of dominant-negative action in carriers of BLM truncation alleles. Our results identify critical molecular determinants of Bloom syndrome complex assembly required for double Holliday junction dissolution and maintenance of genome stability.


Asunto(s)
Síndrome de Bloom/genética , ADN Cruciforme/genética , Inestabilidad Genómica/genética , Alelos , Proteínas Portadoras/genética , Línea Celular , ADN-Topoisomerasas de Tipo I/genética , Humanos , Mutación/genética , Unión Proteica/genética , RecQ Helicasas/genética , Recombinación Genética/genética , Solubilidad
3.
Nature ; 560(7717): 253-257, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30069049

RESUMEN

Acetylation of histones by lysine acetyltransferases (KATs) is essential for chromatin organization and function1. Among the genes coding for the MYST family of KATs (KAT5-KAT8) are the oncogenes KAT6A (also known as MOZ) and KAT6B (also known as MORF and QKF)2,3. KAT6A has essential roles in normal haematopoietic stem cells4-6 and is the target of recurrent chromosomal translocations, causing acute myeloid leukaemia7,8. Similarly, chromosomal translocations in KAT6B have been identified in diverse cancers8. KAT6A suppresses cellular senescence through the regulation of suppressors of the CDKN2A locus9,10, a function that requires its KAT activity10. Loss of one allele of KAT6A extends the median survival of mice with MYC-induced lymphoma from 105 to 413 days11. These findings suggest that inhibition of KAT6A and KAT6B may provide a therapeutic benefit in cancer. Here we present highly potent, selective inhibitors of KAT6A and KAT6B, denoted WM-8014 and WM-1119. Biochemical and structural studies demonstrate that these compounds are reversible competitors of acetyl coenzyme A and inhibit MYST-catalysed histone acetylation. WM-8014 and WM-1119 induce cell cycle exit and cellular senescence without causing DNA damage. Senescence is INK4A/ARF-dependent and is accompanied by changes in gene expression that are typical of loss of KAT6A function. WM-8014 potentiates oncogene-induced senescence in vitro and in a zebrafish model of hepatocellular carcinoma. WM-1119, which has increased bioavailability, arrests the progression of lymphoma in mice. We anticipate that this class of inhibitors will help to accelerate the development of therapeutics that target gene transcription regulated by histone acetylation.


Asunto(s)
Bencenosulfonatos/farmacología , Senescencia Celular/efectos de los fármacos , Histona Acetiltransferasas/antagonistas & inhibidores , Hidrazinas/farmacología , Linfoma/tratamiento farmacológico , Linfoma/patología , Sulfonamidas/farmacología , Acetilación/efectos de los fármacos , Animales , Bencenosulfonatos/uso terapéutico , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Desarrollo de Medicamentos , Fibroblastos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Histona Acetiltransferasas/deficiencia , Histona Acetiltransferasas/genética , Histonas/química , Histonas/metabolismo , Hidrazinas/uso terapéutico , Linfoma/enzimología , Linfoma/genética , Lisina/química , Lisina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Sulfonamidas/uso terapéutico
4.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34548400

RESUMEN

The Plasmodium falciparum proteasome is a potential antimalarial drug target. We have identified a series of amino-amide boronates that are potent and specific inhibitors of the P. falciparum 20S proteasome (Pf20S) ß5 active site and that exhibit fast-acting antimalarial activity. They selectively inhibit the growth of P. falciparum compared with a human cell line and exhibit high potency against field isolates of P. falciparum and Plasmodium vivax They have a low propensity for development of resistance and possess liver stage and transmission-blocking activity. Exemplar compounds, MPI-5 and MPI-13, show potent activity against P. falciparum infections in a SCID mouse model with an oral dosing regimen that is well tolerated. We show that MPI-5 binds more strongly to Pf20S than to human constitutive 20S (Hs20Sc). Comparison of the cryo-electron microscopy (EM) structures of Pf20S and Hs20Sc in complex with MPI-5 and Pf20S in complex with the clinically used anti-cancer agent, bortezomib, reveal differences in binding modes that help to explain the selectivity. Together, this work provides insights into the 20S proteasome in P. falciparum, underpinning the design of potent and selective antimalarial proteasome inhibitors.


Asunto(s)
Compuestos de Boro/farmacología , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/química , Inhibidores de Proteasoma/farmacología , Administración Oral , Animales , Compuestos de Boro/administración & dosificación , Compuestos de Boro/química , Dominio Catalítico , Humanos , Malaria Falciparum/enzimología , Malaria Falciparum/parasitología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Modelos Moleculares , Plasmodium falciparum/enzimología , Inhibidores de Proteasoma/administración & dosificación , Inhibidores de Proteasoma/química
5.
J Allergy Clin Immunol ; 151(2): 324-344, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36424209

RESUMEN

The family of cytokines that comprises IL-3, IL-5, and GM-CSF was discovered over 30 years ago, and their biological activities and resulting impact in clinical medicine has continued to expand ever since. Originally identified as bone marrow growth factors capable of acting on hemopoietic progenitor cells to induce their proliferation and differentiation into mature blood cells, these cytokines are also recognized as key mediators of inflammation and the pathobiology of diverse immunologic diseases. This increased understanding of the functional repertoire of IL-3, IL-5, and GM-CSF has led to an explosion of interest in modulating their functions for clinical management. Key to the successful clinical translation of this knowledge is the recognition that these cytokines act by engaging distinct dimeric receptors and that they share a common signaling subunit called ß-common or ßc. The structural determination of how IL-3, IL-5, and GM-CSF interact with their receptors and linking this to their differential biological functions on effector cells has unveiled new paradigms of cell signaling. This knowledge has paved the way for novel mAbs and other molecules as selective or pan inhibitors for use in different clinical settings.


Asunto(s)
Medicina Clínica , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Humanos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Citocinas/metabolismo , Interleucina-3/metabolismo , Interleucina-5/metabolismo , Eosinófilos , Biología
6.
J Am Chem Soc ; 145(20): 11097-11109, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37183434

RESUMEN

Strategies to target specific protein cysteines are critical to covalent probe and drug discovery. 3-Bromo-4,5-dihydroisoxazole (BDHI) is a natural product-inspired, synthetically accessible electrophilic moiety that has previously been shown to react with nucleophilic cysteines in the active site of purified enzymes. Here, we define the global cysteine reactivity and selectivity of a set of BDHI-functionalized chemical fragments using competitive chemoproteomic profiling methods. Our study demonstrates that BDHIs capably engage reactive cysteine residues in the human proteome and the selectivity landscape of cysteines liganded by BDHI is distinct from that of haloacetamide electrophiles. Given its tempered reactivity, BDHIs showed restricted, selective engagement with proteins driven by interactions between a tunable binding element and the complementary protein sites. We validate that BDHI forms covalent conjugates with glutathione S-transferase Pi (GSTP1) and peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1), emerging anticancer targets. BDHI electrophile was further exploited in Bruton's tyrosine kinase (BTK) inhibitor design using a single-step late-stage installation of the warhead onto acrylamide-containing compounds. Together, this study expands the spectrum of optimizable chemical tools for covalent ligand discovery and highlights the utility of 3-bromo-4,5-dihydroisoxazole as a cysteine-reactive electrophile.


Asunto(s)
Productos Biológicos , Cisteína , Humanos , Cisteína/química , Descubrimiento de Drogas , Acrilamida , Dominio Catalítico , Peptidilprolil Isomerasa de Interacción con NIMA
7.
Cell ; 134(3): 496-507, 2008 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-18692472

RESUMEN

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that controls the production and function of blood cells, is deregulated in clinical conditions such as rheumatoid arthritis and leukemia, yet offers therapeutic value for other diseases. Its receptors are heterodimers consisting of a ligand-specific alpha subunit and a betac subunit that is shared with the interleukin (IL)-3 and IL-5 receptors. How signaling is initiated remains an enigma. We report here the crystal structure of the human GM-CSF/GM-CSF receptor ternary complex and its assembly into an unexpected dodecamer or higher-order complex. Importantly, mutagenesis of the GM-CSF receptor at the dodecamer interface and functional studies reveal that dodecamer formation is required for receptor activation and signaling. This unusual form of receptor assembly likely applies also to IL-3 and IL-5 receptors, providing a structural basis for understanding their mechanism of activation and for the development of therapeutics.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos/química , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/química , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Secuencia de Aminoácidos , Cristalografía , Humanos , Modelos Moleculares , Datos de Secuencia Molecular
8.
Bioorg Chem ; 136: 106462, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37060785

RESUMEN

The MYCN oncogene and histone deacetylases (HDACs) are key driver genes in the childhood cancer, neuroblastoma. We recently described a novel pyridobenzimidazole analogue, SE486-11, which enhanced the therapeutic effectiveness of HDAC inhibitors by increasing MYCN ubiquitination through effects on the deubiquitinase, ubiquitin-specific protease 5 (USP5). Here we describe the synthesis of a novel series of pyrimido[1,2-a]benzimidazole derivatives, and an evaluation of their cytopathic effects against non-malignant and human neuroblastoma cell lines. Among the tested analogues, 4-(4-methoxyphenyl)benzo[4,5]imidazo[1,2-a]pyrimidine (3a) was the most active compound against neuroblastoma cells (IC50 ≤ 2 µM), with low cytotoxicity (IC50 ≥ 15 µM) to normal cells. We show compound 3a bound to USP5 protein (Kd = 0.47 µM) in vitro and synergistically enhanced the efficacy of HDAC inhibitors against neuroblastoma cells. Moreover, knockdown of USP5 and MYCN in treated neuroblastoma cells showed that both USP5 and MYCN expression was necessary for the cytopathic activity of compound 3a, thus providing a clinically relevant rationale for further development of this of pyrimido[1,2-a]benzimidazole.


Asunto(s)
Inhibidores de Histona Desacetilasas , Neuroblastoma , Niño , Humanos , Bencimidazoles , Línea Celular Tumoral , Inhibidores de Histona Desacetilasas/farmacología , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Proteasas Ubiquitina-Específicas
9.
Biochem J ; 479(11): 1181-1204, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35552369

RESUMEN

The AMP-activated protein kinase (AMPK) αßγ heterotrimer is a primary cellular energy sensor and central regulator of energy homeostasis. Activating skeletal muscle AMPK with small molecule drugs improves glucose uptake and provides an opportunity for new strategies to treat type 2 diabetes and insulin resistance, with recent genetic and pharmacological studies indicating the α2ß2γ1 isoform combination as the heterotrimer complex primarily responsible. With the goal of developing α2ß2-specific activators, here we perform structure/function analysis of the 2-hydroxybiphenyl group of SC4, an activator with tendency for α2-selectivity that is also capable of potently activating ß2 complexes. Substitution of the LHS 2-hydroxyphenyl group with polar-substituted cyclohexene-based probes resulted in two AMPK agonists, MSG010 and MSG011, which did not display α2-selectivity when screened against a panel of AMPK complexes. By radiolabel kinase assay, MSG010 and MSG011 activated α2ß2γ1 AMPK with one order of magnitude greater potency than the pan AMPK activator MK-8722. A crystal structure of MSG011 complexed to AMPK α2ß1γ1 revealed a similar binding mode to SC4 and the potential importance of an interaction between the SC4 2-hydroxyl group and α2-Lys31 for directing α2-selectivity. MSG011 induced robust AMPK signalling in mouse primary hepatocytes and commonly used cell lines, and in most cases this occurred in the absence of changes in phosphorylation of the kinase activation loop residue α-Thr172, a classical marker of AMP-induced AMPK activity. These findings will guide future design of α2ß2-selective AMPK activators, that we hypothesise may avoid off-target complications associated with indiscriminate activation of AMPK throughout the body.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Diabetes Mellitus Tipo 2 , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Línea Celular , Diabetes Mellitus Tipo 2/metabolismo , Ratones , Músculo Esquelético/metabolismo , Fosforilación
10.
Semin Cancer Biol ; 68: 31-46, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-31711994

RESUMEN

Drug repurposing is a valuable approach in delivering new cancer therapeutics rapidly into the clinic. Existing safety and patient tolerability data for drugs already in clinical use represent an untapped resource in terms of identifying therapeutic agents for off-label protein targets. The multicellular effects of STAT3 mediated by a range of various upstream signaling pathways make it an attractive therapeutic target with utility in a range of diseases including cancer, and has led to the development of a variety of STAT3 inhibitors. Moreover, heightened STAT3 transcriptional activation in tumor cells and within the cells of the tumor microenvironment contribute to disease progression. Consequently, there are many STAT3 inhibitors in preclinical development or under evaluation in clinical trials for their therapeutic efficacy predominantly in inflammatory diseases and cancer. Despite these advances, many challenges remain in ultimately providing STAT3 inhibitors to patients as cancer treatments, highlighting the need not only for a better understanding of the mechanisms associated with STAT3 activation, but also how various pharmaceutical agents suppress STAT3 activity in various cancers. In this review we discuss the importance of STAT3-dependent functions in cancer, review the status of compounds designed as direct-acting STAT3 inhibitors, and describe some of the strategies for repurposing of drugs as STAT3 inhibitors for cancer therapy.


Asunto(s)
Antineoplásicos/uso terapéutico , Descubrimiento de Drogas , Reposicionamiento de Medicamentos/métodos , Neoplasias/tratamiento farmacológico , Preparaciones Farmacéuticas/administración & dosificación , Factor de Transcripción STAT3/antagonistas & inhibidores , Animales , Humanos
11.
IUBMB Life ; 74(12): 1169-1179, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35836358

RESUMEN

The cholesterol-dependent cytolysins (CDCs) are a major family of bacterial pore-forming proteins secreted as virulence factors by Gram-positive bacterial species. CDCs are produced as soluble, monomeric proteins that bind specifically to cholesterol-rich membranes, where they oligomerize into ring-shaped pores of more than 30 monomers. Understanding the details of the steps the toxin undergoes in converting from monomer to a membrane-spanning pore is a continuing challenge. In this review we summarize what we know about CDCs and highlight the remaining outstanding questions that require answers to obtain a complete picture of how these toxins kill cells.


Asunto(s)
Toxinas Bacterianas , Citotoxinas , Citotoxinas/metabolismo , Toxinas Bacterianas/genética , Colesterol/metabolismo , Bacterias/metabolismo , Membrana Celular/metabolismo , Proteínas Bacterianas/metabolismo
12.
Proc Natl Acad Sci U S A ; 116(28): 13943-13951, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31221747

RESUMEN

Cisplatin [cis-diamminedichloroplatinum(II) (cis-DDP)] is one of the most successful anticancer agents effective against a wide range of solid tumors. However, its use is restricted by side effects and/or by intrinsic or acquired drug resistance. Here, we probed the role of glutathione transferase (GST) P1-1, an antiapoptotic protein often overexpressed in drug-resistant tumors, as a cis-DDP-binding protein. Our results show that cis-DDP is not a substrate for the glutathione (GSH) transferase activity of GST P1-1. Instead, GST P1-1 sequesters and inactivates cisplatin with the aid of 2 solvent-accessible cysteines, resulting in protein subunits cross-linking, while maintaining its GSH-conjugation activity. Furthermore, it is well known that GST P1-1 binding to the c-Jun N-terminal kinase (JNK) inhibits JNK phosphorylation, which is required for downstream apoptosis signaling. Thus, in turn, GST P1-1 overexpression and Pt-induced subunit cross-linking could modulate JNK apoptotic signaling, further confirming the role of GST P1-1 as an antiapoptotic protein.


Asunto(s)
Cisplatino/química , Gutatión-S-Transferasa pi/química , Proteínas Quinasas JNK Activadas por Mitógenos/química , Neoplasias/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Cisplatino/farmacología , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glutatión/química , Gutatión-S-Transferasa pi/genética , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Neoplasias/genética , Fosforilación , Unión Proteica/efectos de los fármacos , Conformación Proteica , Transducción de Señal/efectos de los fármacos
13.
J Allergy Clin Immunol ; 148(2): 585-598, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33771552

RESUMEN

BACKGROUND: Biallelic variants in IL6ST, encoding GP130, cause a recessive form of hyper-IgE syndrome (HIES) characterized by high IgE level, eosinophilia, defective acute phase response, susceptibility to bacterial infections, and skeletal abnormalities due to cytokine-selective loss of function in GP130, with defective IL-6 and IL-11 and variable oncostatin M (OSM) and IL-27 levels but sparing leukemia inhibitory factor (LIF) signaling. OBJECTIVE: Our aim was to understand the functional and structural impact of recessive HIES-associated IL6ST variants. METHODS: We investigated a patient with HIES by using exome, genome, and RNA sequencing. Functional assays assessed IL-6, IL-11, IL-27, OSM, LIF, CT-1, CLC, and CNTF signaling. Molecular dynamics simulations and structural modeling of GP130 cytokine receptor complexes were performed. RESULTS: We identified a patient with compound heterozygous novel missense variants in IL6ST (p.Ala517Pro and the exon-skipping null variant p.Gly484_Pro518delinsArg). The p.Ala517Pro variant resulted in a more profound IL-6- and IL-11-dominated signaling defect than did the previously identified recessive HIES IL6ST variants p.Asn404Tyr and p.Pro498Leu. Molecular dynamics simulations suggested that the p.Ala517Pro and p.Asn404Tyr variants result in increased flexibility of the extracellular membrane-proximal domains of GP130. We propose a structural model that explains the cytokine selectivity of pathogenic IL6ST variants that result in recessive HIES. The variants destabilized the conformation of the hexameric cytokine receptor complexes, whereas the trimeric LIF-GP130-LIFR complex remained stable through an additional membrane-proximal interaction. Deletion of this membrane-proximal interaction site in GP130 consequently caused additional defective LIF signaling and Stüve-Wiedemann syndrome. CONCLUSION: Our data provide a structural basis to understand clinical phenotypes in patients with IL6ST variants.


Asunto(s)
Receptor gp130 de Citocinas , Síndrome de Job , Simulación de Dinámica Molecular , Mutación Missense , Niño , Receptor gp130 de Citocinas/química , Receptor gp130 de Citocinas/genética , Receptor gp130 de Citocinas/inmunología , Citocinas/genética , Citocinas/inmunología , Genes Recesivos , Humanos , Síndrome de Job/genética , Síndrome de Job/inmunología , Masculino , RNA-Seq , Transducción de Señal/genética , Transducción de Señal/inmunología , Secuenciación del Exoma
14.
J Biol Chem ; 295(47): 16100-16112, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-32952126

RESUMEN

The role of proliferation-associated protein 2G4 (PA2G4), alternatively known as ErbB3-binding protein 1 (EBP1), in cancer has become apparent over the past 20 years. PA2G4 expression levels are correlated with prognosis in a range of human cancers, including neuroblastoma, cervical, brain, breast, prostate, pancreatic, hepatocellular, and other tumors. There are two PA2G4 isoforms, PA2G4-p42 and PA2G4-p48, and although both isoforms of PA2G4 regulate cellular growth and differentiation, these isoforms often have opposing roles depending on the context. Therefore, PA2G4 can function either as a contextual tumor suppressor or as an oncogene, depending on the tissue being studied. However, it is unclear how distinct structural features of the two PA2G4 isoforms translate into different functional outcomes. In this review, we examine published structures to identify important structural and functional components of PA2G4 and consider how they may explain its crucial role in the malignant phenotype. We will highlight the lysine-rich regions, protein-protein interaction sites, and post-translational modifications of the two PA2G4 isoforms and relate these to the functional cellular role of PA2G4. These data will enable a better understanding of the function and structure relationship of the two PA2G4 isoforms and highlight the care that will need to be undertaken for those who wish to conduct isoform-specific structure-based drug design campaigns.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Humanos , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Unión al ARN/genética , Relación Estructura-Actividad
15.
J Biol Chem ; 295(48): 16239-16250, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-32913128

RESUMEN

The calcium-calmodulin-dependent protein kinase kinase-2 (CaMKK2) is a key regulator of cellular and whole-body energy metabolism. It is known to be activated by increases in intracellular Ca2+, but the mechanisms by which it is inactivated are less clear. CaMKK2 inhibition protects against prostate cancer, hepatocellular carcinoma, and metabolic derangements induced by a high-fat diet; therefore, elucidating the intracellular mechanisms that inactivate CaMKK2 has important therapeutic implications. Here we show that stimulation of cAMP-dependent protein kinase A (PKA) signaling in cells inactivates CaMKK2 by phosphorylation of three conserved serine residues. PKA-dependent phosphorylation of Ser495 directly impairs calcium-calmodulin activation, whereas phosphorylation of Ser100 and Ser511 mediate recruitment of 14-3-3 adaptor proteins that hold CaMKK2 in the inactivated state by preventing dephosphorylation of phospho-Ser495 We also report the crystal structure of 14-3-3ζ bound to a synthetic diphosphorylated peptide that reveals how the canonical (Ser511) and noncanonical (Ser100) 14-3-3 consensus sites on CaMKK2 cooperate to bind 14-3-3 proteins. Our findings provide detailed molecular insights into how cAMP-PKA signaling inactivates CaMKK2 and reveals a pathway to inhibit CaMKK2 with potential for treating human diseases.


Asunto(s)
Proteínas 14-3-3/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Transducción de Señal , Proteínas 14-3-3/genética , Animales , Células COS , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Línea Celular Tumoral , Chlorocebus aethiops , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Activación Enzimática , Humanos
16.
J Biol Chem ; 295(24): 8285-8301, 2020 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-32332100

RESUMEN

Interleukin (IL) 11 activates multiple intracellular signaling pathways by forming a complex with its cell surface α-receptor, IL-11Rα, and the ß-subunit receptor, gp130. Dysregulated IL-11 signaling has been implicated in several diseases, including some cancers and fibrosis. Mutations in IL-11Rα that reduce signaling are also associated with hereditary cranial malformations. Here we present the first crystal structure of the extracellular domains of human IL-11Rα and a structure of human IL-11 that reveals previously unresolved detail. Disease-associated mutations in IL-11Rα are generally distal to putative ligand-binding sites. Molecular dynamics simulations showed that specific mutations destabilize IL-11Rα and may have indirect effects on the cytokine-binding region. We show that IL-11 and IL-11Rα form a 1:1 complex with nanomolar affinity and present a model of the complex. Our results suggest that the thermodynamic and structural mechanisms of complex formation between IL-11 and IL-11Rα differ substantially from those previously reported for similar cytokines. This work reveals key determinants of the engagement of IL-11 by IL-11Rα that may be exploited in the development of strategies to modulate formation of the IL-11-IL-11Rα complex.


Asunto(s)
Subunidad alfa del Receptor de Interleucina-11/química , Subunidad alfa del Receptor de Interleucina-11/metabolismo , Interleucina-11/metabolismo , Área Bajo la Curva , Línea Celular Tumoral , Entropía , Humanos , Subunidad alfa del Receptor de Interleucina-11/genética , Modelos Moleculares , Mutación/genética , Unión Proteica , Dominios Proteicos , Relación Estructura-Actividad , Termodinámica
17.
Basic Res Cardiol ; 116(1): 17, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33721106

RESUMEN

The monocyte ß2-integrin Mac-1 is crucial for leukocyte-endothelium interaction, rendering it an attractive therapeutic target for acute and chronic inflammation. Using phage display, a Designed-Ankyrin-Repeat-Protein (DARPin) was selected as a novel binding protein targeting and blocking the αM I-domain, an activation-specific epitope of Mac-1. This DARPin, named F7, specifically binds to activated Mac-1 on mouse and human monocytes as determined by flow cytometry. Homology modelling and docking studies defined distinct interaction sites which were verified by mutagenesis. Intravital microscopy showed reduced leukocyte-endothelium adhesion in mice treated with this DARPin. Using mouse models of sepsis, myocarditis and ischaemia/reperfusion injury, we demonstrate therapeutic anti-inflammatory effects. Finally, the activated Mac-1-specific DARPin is established as a tool to detect monocyte activation in patients receiving extra-corporeal membrane oxygenation, as well as suffering from sepsis and ST-elevation myocardial infarction. The activated Mac-1-specific DARPin F7 binds preferentially to activated monocytes, detects inflammation in critically ill patients, and inhibits monocyte and neutrophil function as an efficient new anti-inflammatory agent.


Asunto(s)
Antiinflamatorios/farmacología , Proteínas de Repetición de Anquirina Diseñadas/farmacología , Antígeno de Macrófago-1/metabolismo , Monocitos/efectos de los fármacos , Infarto del Miocardio/tratamiento farmacológico , Miocarditis/tratamiento farmacológico , Miocardio/metabolismo , Sepsis/tratamiento farmacológico , Animales , Técnicas de Visualización de Superficie Celular , Células Cultivadas , Proteínas de Repetición de Anquirina Diseñadas/genética , Modelos Animales de Enfermedad , Epítopos , Oxigenación por Membrana Extracorpórea , Humanos , Antígeno de Macrófago-1/genética , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Simulación del Acoplamiento Molecular , Monocitos/inmunología , Monocitos/metabolismo , Infarto del Miocardio/inmunología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Miocarditis/inmunología , Miocarditis/metabolismo , Miocarditis/fisiopatología , Miocardio/inmunología , Miocardio/patología , Prueba de Estudio Conceptual , Unión Proteica , Infarto del Miocardio con Elevación del ST/inmunología , Infarto del Miocardio con Elevación del ST/metabolismo , Sepsis/inmunología , Sepsis/metabolismo , Sepsis/fisiopatología , Función Ventricular Izquierda/efectos de los fármacos
18.
Chem Rev ; 119(13): 7721-7736, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31244002

RESUMEN

The cholesterol-dependent cytolysins (CDCs) are a family of bacterial protein toxins specifically targeting eukaryotic cells through the absolute requirement for high concentrations of cholesterol in the target cells' lipid membrane. The soluble monomeric protein secreted by the bacteria oligomerizes on the surface of the target cell, and the complex formed then undergoes a concerted structural transition that results in the creation of a multimeric protein pore. Recognition of the cholesterol-rich membrane by CDCs is a surprisingly subtle process that takes place at the interface between the membrane and surrounding aqueous environment. The structure and composition of the lipid membrane modulates the efficiency with which the protein can identify cholesterol and alters the concentration of sterol required for membrane binding. Some of the details of the interplay between protein and membrane remain to be resolved, and in this review we present a current perspective on CDC pore formation, with particular focus on the role of the lipid bilayer and cholesterol accessibility.


Asunto(s)
Bacterias/química , Toxinas Bacterianas/química , Colesterol/química , Citotoxinas/química , Bacterias/metabolismo , Bacterias/patogenicidad , Infecciones Bacterianas/metabolismo , Infecciones Bacterianas/microbiología , Toxinas Bacterianas/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Colesterol/metabolismo , Citotoxinas/metabolismo , Humanos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Modelos Moleculares , Factores de Virulencia/química , Factores de Virulencia/metabolismo
19.
J Biol Chem ; 294(1): 20-27, 2019 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-30420427

RESUMEN

Bioluminescence of a variety of marine organisms, mostly cnidarians and ctenophores, is carried out by Ca2+-dependent photoproteins. The mechanism of light emission operates via the same reaction in both animal families. Despite numerous studies on the ctenophore photoprotein family, the detailed catalytic mechanism and arrangement of amino acid residues surrounding the chromophore in this family are a mystery. Here, we report the crystal structure of Cd2+-loaded apo-mnemiopsin1, a member of the ctenophore family, at 2.15 Å resolution and used quantum mechanics/molecular mechanics (QM/MM) to investigate its reaction mechanism. The simulations suggested that an Asp-156-Arg-39-Tyr-202 triad creates a hydrogen-bonded network to facilitate the transfer of a proton from the 2-hydroperoxy group of the chromophore coelenterazine to bulk solvent. We identified a water molecule in the coelenteramide-binding cavity that forms a hydrogen bond with the amide nitrogen atom of coelenteramide, which, in turn, is hydrogen-bonded via another water molecule to Tyr-131. This observation supports the hypothesis that the function of the coelenteramide-bound water molecule is to catalyze the 2-hydroperoxycoelenterazine decarboxylation reaction by protonation of a dioxetanone anion, thereby triggering the bioluminescence reaction in the ctenophore photoprotein family.


Asunto(s)
Ctenóforos/química , Mediciones Luminiscentes , Proteínas Luminiscentes/química , Animales , Cristalografía por Rayos X , Ctenóforos/genética , Enlace de Hidrógeno , Proteínas Luminiscentes/genética , Mutación
20.
Biol Reprod ; 102(6): 1261-1269, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32179898

RESUMEN

Aromatase (P450arom, CYP19A1) is the terminal enzyme in the synthesis of the steroid hormone family of estrogens. Not surprisingly, this enzyme has structural similarities between the limited number of species studied thus far. This study examined the structure of aromatases from four diverse Australian species including a marsupial (tammar wallaby; Macropus eugenii), monotreme (platypus; Ornithorhynchus anatinus), ratite (emu; Dromaius novaehollandiae) and lizard (bearded dragon; Pogona vitticeps). We successfully built homology models for each species, using the only crystallographically determined structure available, human aromatase. The amino acid sequences showed high amino acid sequence identity to the human aromatase: wallaby 81%, platypus 73%, emu 75% and bearded dragon at 74%. The overall structure was highly conserved among the five species, although there were non-secondary structures (loops and bends) that were variable and flexible that may result in some differences in catalytic activity. At the N-terminal regions, there were deletions and variations that suggest that functional distinctions may be found. We found that the active sites of all these proteins were identical, except for a slight variation in the emu. The electrostatic potential across the surfaces of these aromatases highlighted likely variations to the protein-protein interactions of these enzymes with both redox partner cytochrome P450 reductase and possibly homodimerization in the case of the platypus, which has been postulated for the human aromatase enzyme. Given the high natural selection pressures on reproductive strategies, the relatively high degree of conservation of aromatase sequence and structure across species suggests that there is biochemically very little scope for changes to have evolved without the loss of enzyme activity.


Asunto(s)
Aromatasa/metabolismo , Lagartos/metabolismo , Marsupiales/metabolismo , Paleognatos/metabolismo , Ornitorrinco/metabolismo , Secuencia de Aminoácidos , Animales , Aromatasa/genética , Regulación Enzimológica de la Expresión Génica , Genoma , Humanos , Lagartos/genética , Marsupiales/genética , Modelos Moleculares , Paleognatos/genética , Ornitorrinco/genética , Conformación Proteica , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA