Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Endocrinol Metab ; 326(4): E493-E502, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38381399

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is characterized by excess lipid accumulation that can progress to inflammation (nonalcoholic steatohepatitis, NASH), and fibrosis. Serum ß-hydroxybutyrate (ß-HB), a product of the ketogenic pathway, is commonly used as a surrogate marker for hepatic fatty acid oxidation (FAO). However, it remains uncertain whether this relationship holds true in the context of NAFLD in humans. We compared fasting serum ß-HB levels with direct measurement of liver mitochondrial palmitate oxidation in humans stratified based on NAFLD severity (n = 142). Patients were stratified based on NAFLD activity score (NAS): NAS = 0 (no disease), NAS = 1-2 (mild), NAS = 3-4 (moderate), and NAS ≥ 5 (advanced). Moderate and advanced NAFLD is associated with reductions in liver 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), serum ß-HB, but not 3-hydroxy-3-methylglutaryl-CoA lyase (HMGCL) mRNA, relative to no disease. Worsening liver mitochondrial complete palmitate oxidation corresponded with lower HMGCS2 mRNA but not total (complete + incomplete) palmitate oxidation. Interestingly, we found that liver HMGCS2 mRNA and serum ß-HB correlated with liver mitochondrial ß-hydroxyacyl-CoA dehydrogenase (ß-HAD) activity and CPT1A mRNA. Also, lower mitochondrial mass and markers of mitochondrial turnover positively correlated with lower HMGCS2 in the liver. These data suggest that liver ketogenesis and FAO occur at comparable rates in individuals with NAFLD. Our findings support the utility of serum ß-HB to serve as a marker of liver injury and hepatic FAO in the context of NAFLD.NEW & NOTEWORTHY Serum ß-hydroxybutyrate (ß-HB) is frequently utilized as a surrogate marker for hepatic fatty acid oxidation; however, few studies have investigated this relationship during states of liver disease. We found that the progression of nonalcoholic fatty liver disease (NAFLD) is associated with reductions in circulating ß-HB and liver 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2). As well, decreased rates of hepatic fatty acid oxidation correlated with liver HMGCS2 mRNA and serum ß-HB. Our work supports serum ß-HB as a potential marker for hepatic fatty acid oxidation and liver injury during NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Hígado/metabolismo , Obesidad/metabolismo , Cuerpos Cetónicos/metabolismo , Biomarcadores/metabolismo , ARN Mensajero/metabolismo , Palmitatos/metabolismo
2.
J Hepatol ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38914313

RESUMEN

BACKGROUND & AIMS: Metabolic-dysfunction associated steatohepatitis (MASH) is one of the most common liver diseases worldwide and is characterized by multi-tissue insulin resistance. The effects of a 10-month energy restriction and exercise intervention on liver histology, anthropometrics, plasma biochemistries, and insulin sensitivity were compared to standard of care (control) to understand mechanisms that support liver health improvements. METHODS: Following medical diagnosis of MASH, subjects were randomized to treatment (n=16) or control (n=8). Liver fat (MRS), 18-hour plasma biochemical measurements, and isotopically-labeled hyperinsulinemic-euglycemic clamps were completed pre- and post-intervention. Body composition and cardiorespiratory fitness (VO2peak) were also measured mid-intervention. Treatment subjects were counseled to reduce energy intake and completed supervised, high-intensity interval training (3x/week) for 10 months. Control subjects continued physician-directed care. RESULTS: Treatment induced significant (P<0.05) reductions in body weight, fat mass, and liver injury, while VO2peak (P<0.05) and fatty acid (NEFA) suppression (P=0.06) were improved. Both groups exhibited reductions in total energy intake, HbA1c, hepatic insulin resistance, and liver fat (P<0.05). Compared to control, treatment induced a two-fold increase in peripheral insulin sensitivity which was significantly related to higher VO2peak and resolution of liver disease, despite no group differences in peripheral insulin sensitivity. CONCLUSIONS: Exercise and energy-restriction elicited significant and clinically-meaningful treatment effects on liver health, potentially driven by a redistribution of excess nutrients to skeletal muscle, thereby reducing hepatic nutrient toxicity. Clinical guidelines should emphasize the addition of aerobic exercise in lifestyle treatments for the greatest histologic benefit in individuals with advanced MASH. CLINICAL TRIAL NUMBER: NCT03151798.

3.
J Lipid Res ; 64(5): 100366, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37028768

RESUMEN

Ceramides (CERs) are key intermediate sphingolipids implicated in contributing to mitochondrial dysfunction and the development of multiple metabolic conditions. Despite the growing evidence of CER role in disease risk, kinetic methods to measure CER turnover are lacking, particularly using in vivo models. The utility of orally administered 13C3, 15N l-serine, dissolved in drinking water, was tested to quantify CER 18:1/16:0 synthesis in 10-week-old male and female C57Bl/6 mice. To generate isotopic labeling curves, animals consumed either a control diet or high-fat diet (HFD; n = 24/diet) for 2 weeks and varied in the duration of the consumption of serine-labeled water (0, 1, 2, 4, 7, or 12 days; n = 4 animals/day/diet). Unlabeled and labeled hepatic and mitochondrial CERs were quantified using liquid chromatography tandem MS. Total hepatic CER content did not differ between the two diet groups, whereas total mitochondrial CERs increased with HFD feeding (60%, P < 0.001). Within hepatic and mitochondrial pools, HFD induced greater saturated CER concentrations (P < 0.05) and significantly elevated absolute turnover of 16:0 mitochondrial CER (mitochondria: 59%, P < 0.001 vs. liver: 15%, P = 0.256). The data suggest cellular redistribution of CERs because of the HFD. These data demonstrate that a 2-week HFD alters the turnover and content of mitochondrial CERs. Given the growing data on CERs contributing to hepatic mitochondrial dysfunction and the progression of multiple metabolic diseases, this method may now be used to investigate how CER turnover is altered in these conditions.


Asunto(s)
Ceramidas , Esfingolípidos , Ratones , Animales , Masculino , Femenino , Ceramidas/metabolismo , Esfingolípidos/metabolismo , Hígado/metabolismo , Mitocondrias/metabolismo , Dieta Alta en Grasa/efectos adversos
4.
Am J Physiol Regul Integr Comp Physiol ; 324(3): R293-R304, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36622084

RESUMEN

Vascular insulin resistance, a major characteristic of obesity and type 2 diabetes (T2D), manifests with blunting of insulin-induced vasodilation. Although there is evidence that females are more whole body insulin sensitive than males in the healthy state, whether sex differences exist in vascular insulin sensitivity is unclear. Also uncertain is whether weight loss can reestablish vascular insulin sensitivity in T2D. The purpose of this investigation was to 1) establish if sex differences in vasodilatory responses to insulin exist in absence of disease, 2) determine whether female sex affords protection against the development of vascular insulin resistance with long-term overnutrition and obesity, and 3) examine if diet-induced weight loss can restore vascular insulin sensitivity in men and women with T2D. First, we show in healthy mice and humans that sex does not influence insulin-induced femoral artery dilation and insulin-stimulated leg blood flow, respectively. Second, we provide evidence that female mice are protected against impairments in insulin-induced dilation caused by overnutrition-induced obesity. Third, we show that men and women exhibit comparable levels of vascular insulin resistance when T2D develops but that diet-induced weight loss is effective at improving insulin-stimulated leg blood flow, particularly in women. Finally, we provide indirect evidence that these beneficial effects of weight loss may be mediated by a reduction in endothelin-1. In aggregate, the present data indicate that female sex confers protection against obesity-induced vascular insulin resistance and provide supportive evidence that, in women with T2D, vascular insulin resistance can be remediated with diet-induced weight loss.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Femenino , Masculino , Ratones , Animales , Resistencia a la Insulina/fisiología , Insulina , Obesidad , Pérdida de Peso , Arteria Femoral , Dieta
5.
Hepatology ; 76(5): 1452-1465, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35000203

RESUMEN

BACKGROUND AND AIMS: NAFLD and its more-advanced form, steatohepatitis (NASH), is associated with obesity and is an independent risk factor for cardiovascular, liver-related, and all-cause mortality. Available human data examining hepatic mitochondrial fatty acid oxidation (FAO) and hepatic mitochondrial turnover in NAFLD and NASH are scant. APPROACH AND RESULTS: To investigate this relationship, liver biopsies were obtained from patients with obesity undergoing bariatric surgery and data clustered into four groups based on hepatic histopathological classification: Control (CTRL; no disease); NAFL (steatosis only); Borderline-NASH (steatosis with lobular inflammation or hepatocellular ballooning); and Definite-NASH (D-NASH; steatosis, lobular inflammation, and hepatocellular ballooning). Hepatic mitochondrial complete FAO to CO2 and the rate-limiting enzyme in ß-oxidation (ß-hydroxyacyl-CoA dehydrogenase activity) were reduced by ~40%-50% with D-NASH compared with CTRL. This corresponded with increased hepatic mitochondrial reactive oxygen species production, as well as dramatic reductions in markers of mitochondrial biogenesis, autophagy, mitophagy, fission, and fusion in NAFL and NASH. CONCLUSIONS: These findings suggest that compromised hepatic FAO and mitochondrial turnover are intimately linked to increasing NAFLD severity in patients with obesity.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/patología , Especies Reactivas de Oxígeno , Dióxido de Carbono , Hígado/patología , Biomarcadores , Obesidad/patología , Inflamación/patología , Recambio Mitocondrial , Ácidos Grasos , Oxidorreductasas , Coenzima A
6.
J Nutr ; 153(12): 3418-3429, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37774841

RESUMEN

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) prevalence is rapidly growing, and fatty liver has been found in a quarter of the US population. Increased liver lipids, particularly those derived from the pathway of de novo lipogenesis (DNL), have been identified as a hallmark feature in individuals with high liver fat. This has led to much activity in basic science and drug development in this area. No studies to date have investigated the contribution of DNL across a spectrum of disease, although it is clear that inhibition of DNL has been shown to reduce liver fat. OBJECTIVES: The purpose of this study was to determine whether liver lipid synthesis increases across the continuum of liver injury. METHODS: Individuals (n = 49) consumed deuterated water for 10 d before their scheduled bariatric surgeries to label DNL; blood and liver tissue samples were obtained on the day of the surgery. Liver lipid concentrations were quantitated, and levels of protein and gene expression assessed. RESULTS: Increased liver DNL, measured isotopically, was significantly associated with liver fatty acid synthase protein content (R = 0.470, P = 0.003), total steatosis assessed by histology (R = 0.526, P = 0.0008), and the fraction of DNL fatty acids in plasma very low-density lipoprotein-triacylglycerol (R = 0.747, P < 0.001). Regression analysis revealed a parabolic relationship between fractional liver DNL (percent) and NAFLD activity score (R = 0.538, P = 0.0004). CONCLUSION: These data demonstrate that higher DNL is associated with early to mid stages of liver disease, and this pathway may be an effective target for the treatment of NAFLD and nonalcoholic steatohepatitis. This study was registered at clinicaltrials.gov as NCT03683589.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Triglicéridos/metabolismo , Marcaje Isotópico , Hígado/metabolismo , Ácidos Grasos/metabolismo , Lipogénesis
7.
J Lipid Res ; 63(11): 100288, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36162520

RESUMEN

In mothers who are nursing their infants, increased clearance of plasma metabolites into the mammary gland may reduce ectopic lipid in the liver. No study to date has investigated the role of lactation on liver lipid synthesis in humans, and we hypothesized that lactation would modify fatty acid and glucose handling to support liver metabolism in a manner synchronized with the demands of milk production. Lactating (n = 18) and formula-feeding women (n = 10) underwent metabolic testing at 6-week postpartum to determine whether lactation modified intrahepatic triacylglycerols (IHTGs), measured by proton magnetic resonance spectroscopy. Subjects ingested oral deuterated water to measure fractional de novo lipogenesis (DNL) in VLDL-TG during fasting and during an isotope-labeled clamp at an insulin infusion rate of 10 mU/m2/min. Compared with formula-feeding women, we found that lactating women exhibited lower plasma VLDL-TG concentrations, similar IHTG content and similar contribution of DNL to total VLDL-TG production. These findings suggest that lactation lowers plasma VLDL-TG concentrations for reasons that are unrelated to IHTG and DNL. Surprisingly, we determined that the rate of appearance of nonesterified fatty acids was not related to IHTG in either group, and the expected positive association between DNL and IHTG was only significant in formula-feeding women. Further, in lactating women only, the higher the prolactin concentration, the lower the IHTG, while greater DNL strongly associated with elevations in VLDL-TG. In conclusion, we suggest that future studies should investigate the role of lactation and prolactin in liver lipid secretion and metabolism.


Asunto(s)
Lactancia , Lipogénesis , Femenino , Humanos , Prolactina/metabolismo , Hígado/metabolismo , Triglicéridos/metabolismo , Periodo Posparto
8.
Am J Physiol Heart Circ Physiol ; 323(5): H879-H891, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36083795

RESUMEN

Adropin is a peptide largely secreted by the liver and known to regulate energy homeostasis; however, it also exerts cardiovascular effects. Herein, we tested the hypothesis that low circulating levels of adropin in obesity and type 2 diabetes (T2D) contribute to arterial stiffening. In support of this hypothesis, we report that obesity and T2D are associated with reduced levels of adropin (in liver and plasma) and increased arterial stiffness in mice and humans. Establishing causation, we show that mesenteric arteries from adropin knockout mice are also stiffer, relative to arteries from wild-type counterparts, thus recapitulating the stiffening phenotype observed in T2D db/db mice. Given the above, we performed a set of follow-up experiments, in which we found that 1) exposure of endothelial cells or isolated mesenteric arteries from db/db mice to adropin reduces filamentous actin (F-actin) stress fibers and stiffness, 2) adropin-induced reduction of F-actin and stiffness in endothelial cells and db/db mesenteric arteries is abrogated by inhibition of nitric oxide (NO) synthase, and 3) stimulation of smooth muscle cells or db/db mesenteric arteries with a NO mimetic reduces stiffness. Lastly, we demonstrated that in vivo treatment of db/db mice with adropin for 4 wk reduces stiffness in mesenteric arteries. Collectively, these findings indicate that adropin can regulate arterial stiffness, likely via endothelium-derived NO, and thus support the notion that "hypoadropinemia" should be considered as a putative target for the prevention and treatment of arterial stiffening in obesity and T2D.NEW & NOTEWORTHY Arterial stiffening, a characteristic feature of obesity and type 2 diabetes (T2D), contributes to the development and progression of cardiovascular diseases. Herein we establish that adropin is decreased in obese and T2D models and furthermore provide evidence that reduced adropin may directly contribute to arterial stiffening. Collectively, findings from this work support the notion that "hypoadropinemia" should be considered as a putative target for the prevention and treatment of arterial stiffening in obesity and T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Rigidez Vascular , Actinas , Animales , Células Endoteliales , Humanos , Arterias Mesentéricas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico , Óxido Nítrico Sintasa , Obesidad/complicaciones , Péptidos/farmacología , Rigidez Vascular/fisiología
9.
Am J Physiol Endocrinol Metab ; 320(4): E702-E715, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33522396

RESUMEN

Elevated postprandial lipemia is an independent risk factor for cardiovascular disease, yet methods to quantitate postmeal handling of dietary lipids in humans are limited. This study tested a new method to track dietary lipid appearance using a stable isotope tracer (2H11-oleate) in liquid meals containing three levels of fat [low fat (LF), 15 g; moderate fat (MF), 30 g; high fat (HF), 60 g]. Meals were fed to 12 healthy men [means ± SD, age 31.3 ± 9.2 yr, body mass index (BMI) 24.5 ± 1.9 kg/m2] during four randomized study visits; the HF meal was administered twice for reproducibility. Blood was collected over 8 h postprandially, triglyceride (TG)-rich lipoproteins (TRL), and particles with a Svedberg flotation rate >400 (Sf > 400, n = 8) were isolated by ultracentrifugation, and labeling of two TG species (54:3 and 52:2) was quantified by LC-MS. Total plasma TRL-TG concentrations were threefold greater than Sf > 400-TG. Both Sf > 400- and TRL-TG 54:3 were present at higher concentrations than 52:2, and singly labeled TG concentrations were higher than doubly labeled. Furthermore, TG 54:3 and the singly labeled molecules demonstrated higher plasma absolute entry rates differing significantly across fat levels within a single TG species (P < 0.01). Calculation of fractional entry showed no significant differences in label handling supporting the utility of either TG species for appearance rate calculations. These data demonstrate the utility of labeling research meals with stable isotopes to investigate human postprandial lipemia while simultaneously highlighting the importance of examining individual responses. Meal type and timing, control of prestudy activities, and effects of sex on outcomes should match the research goals. The method, optimized here, will be beneficial to conduct basic science research in precision nutrition and clinical drug development.NEW & NOTEWORTHY A novel method to test human intestinal lipid handling using stable isotope labeling is presented and, for the first time, plasma appearance and lipid turnover were quantified in 12 healthy men following meals with varying amounts of fat. The method can be applied to studies in precision nutrition characterizing individual response to support basic science research or drug development. This report discusses key questions for consideration in precision nutrition that were highlighted by the data.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Hiperlipidemias/sangre , Lípidos/sangre , Periodo Posprandial , Espectrometría de Masas en Tándem/métodos , Adolescente , Adulto , Cromatografía Liquida/métodos , Estudios Cruzados , Grasas de la Dieta/administración & dosificación , Humanos , Hiperlipidemias/diagnóstico , Lípidos/análisis , Masculino , Comidas , Ciencias de la Nutrición/métodos , Ciencias de la Nutrición/tendencias , Medicina de Precisión/métodos , Medicina de Precisión/tendencias , Reproducibilidad de los Resultados , Adulto Joven
10.
Hepatology ; 72(1): 103-118, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31630414

RESUMEN

BACKGROUND AND AIMS: Elevated hepatic de novo lipogenesis (DNL) is a key distinguishing characteristic of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis. In rodent models of NAFLD, treatment with a surrogate of TVB-2640, a pharmacological fatty acid synthase inhibitor, has been shown to reduce hepatic fat and other biomarkers of DNL. The purpose of this phase I clinical study was to test the effect of the TVB-2640 in obese men with certain metabolic abnormalities that put them at risk for NAFLD. APPROACH AND RESULTS: Twelve subjects (mean ± SEM, 42 ± 2 years, body mass index 37.4 ± 1.2 kg/m2 , glucose 103 ± 2 mg/dL, triacylglycerols 196 ± 27 mg/dL, and elevated liver enzymes) underwent 10 days of treatment with TVB-2640 at doses ranging from 50-150 mg/day. Food intake was controlled throughout the study. Hepatic DNL was measured before and after an oral fructose/glucose bolus using isotopic labeling with 1-13 C1 -acetate intravenous infusion, followed by measurement of labeled very low-density lipoprotein palmitate via gas chromatography mass spectometry. Substrate oxidation was measured by indirect calorimetry. Across the range of doses, fasting DNL was reduced by up to 90% (P = 0.003). Increasing plasma concentrations of TVB-2640 were associated with progressive reductions in the percent of fructose-stimulated peak fractional DNL (R2  = -0.749, P = 0.0003) and absolute DNL area under the curve 6 hours following fructose/glucose bolus (R2  = -0.554, P = 0.005). For all subjects combined, alanine aminotransferase was reduced by 15.8 ± 8.4% (P = 0.05). Substrate oxidation was unchanged, and safety monitoring revealed that the drug was well tolerated, without an increase in plasma triglycerides. Alopecia occurred in 2 subjects (reversed after stopping the drug), but otherwise no changes were observed in fasting glucose, insulin, ketones, and renal function. CONCLUSION: These data support the therapeutic potential of a fatty acid synthase inhibitor, TVB-2640 in particular, in patients with NAFLD and nonalcoholic steatohepatitis.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Ácido Graso Sintasas/antagonistas & inhibidores , Lipogénesis/efectos de los fármacos , Hígado/metabolismo , Enfermedades Metabólicas/metabolismo , Nitrilos/farmacología , Piperidinas/farmacología , Triazoles/farmacología , Adulto , Humanos , Masculino
11.
J Sleep Res ; 30(6): e13381, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33949729

RESUMEN

Sleep restriction (SR) (<6 h) and physical activity (PA) are risk factors for obesity, but little work has examined the inter-related influences of both risk factors. In a free-living environment, 13 overweight/obese adults were sleep restricted for five nights to 6 h time-in-bed each night, with and without regular exercise (45 min/65% VO2 max; counterbalanced design). Two days of recovery sleep followed SR. Subjects were measured during a mixed meal tolerance test (MMT), resting metabolic rate, cognitive testing and fat biopsy (n=8). SR increased peak glucose response (+7.3 mg/dl, p = .04), elevated fasting non-esterified fatty acid (NEFA) concentrations (+0.1 mmol/L, p = .001) and enhanced fat oxidation (p < .001) without modifying step counts or PA intensity. Inclusion of daily exercise increased step count (+4,700 steps/day, p < .001) and decreased the insulin response to a meal (p = .01) but did not prevent the increased peak glucose response or elevated NEFA levels. The weekend recovery period improved fasting glucose (p = .02), insulin (p = .02), NEFA concentrations (p = .001) and HOMA-IR (p < .01) despite reduced steps (p < .01) and increased sedentary time (p < .01). Abdominal adipose tissue (AT) samples, obtained after baseline, SR and exercise, did not differ in lipolytic capacity following SR. Fatty acid synthase protein content tended to increase following SR (p = .07), but not following exercise. In a free-living setting, SR adversely affected circulating NEFAs, fuel oxidation and peak glucose response but did not directly affect glucose tolerance or AT lipolysis. SR-associated metabolic impairments were not mitigated by exercise, yet recovery sleep completely rescued its adverse effects on glucose metabolism.


Asunto(s)
Glucemia , Sueño , Adulto , Ejercicio Físico , Glucosa , Humanos , Insulina , Obesidad
12.
Gastroenterology ; 146(3): 726-35, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24316260

RESUMEN

BACKGROUND & AIMS: There have been few studies of the role of de novo lipogenesis in the development of nonalcoholic fatty liver disease (NAFLD). We used isotope analyses to compare de novo lipogenesis and fatty acid flux between subjects with NAFLD and those without, matched for metabolic factors (controls). METHODS: We studied subjects with metabolic syndrome and/or levels of alanine aminotransferase and aspartate aminotransferase >30 mU/L, using magnetic resonance spectroscopy to identify those with high levels (HighLF, n = 13) or low levels (LowLF, n = 11) of liver fat. Clinical and demographic information was collected from all participants, and insulin sensitivity was measured using the insulin-modified intravenous glucose tolerance test. Stable isotopes were administered and gas chromatography with mass spectrometry was used to analyze free (nonesterified) fatty acid (FFA) and triacylglycerol flux and lipogenesis. RESULTS: Subjects with HighLF (18.4% ± 3.6%) had higher plasma levels of FFAs during the nighttime and higher concentrations of insulin than subjects with LowLF (3.1% ± 2.7%; P = .04 and P < .001, respectively). No differences were observed between groups in adipose flux of FFAs (414 ± 195 µmol/min for HighLF vs 358 ± 105 µmol/min for LowLF; P = .41) or production of very-low-density lipoprotein triacylglycerol from FFAs (4.06 ± 2.57 µmol/min vs 4.34 ± 1.82 µmol/min; P = .77). In contrast, subjects with HighLF had more than 3-fold higher rates of de novo fatty acid synthesis than subjects with LowLF (2.57 ± 1.53 µmol/min vs 0.78 ± 0.42 µmol/min; P = .001). As a percentage of triacylglycerol palmitate, de novo lipogenesis was 2-fold higher in subjects with HighLF (23.2% ± 7.9% vs 10.1% ± 6.7%; P < .001); this level was independently associated with the level of intrahepatic triacylglycerol (r = 0.53; P = .007). CONCLUSIONS: By administering isotopes to subjects with NAFLD and control subjects, we confirmed that those with NAFLD have increased synthesis of fatty acids. Subjects with NAFLD also had higher nocturnal plasma levels of FFAs and did not suppress the contribution from de novo lipogenesis on fasting. These findings indicate that lipogenesis might be a therapeutic target for NAFLD.


Asunto(s)
Hígado Graso/fisiopatología , Hiperlipidemias/fisiopatología , Lipogénesis/fisiología , Estudios de Casos y Controles , Comorbilidad , Ácidos Grasos no Esterificados/metabolismo , Hígado Graso/epidemiología , Femenino , Humanos , Hiperlipidemias/epidemiología , Hígado/enzimología , Hígado/patología , Imagen por Resonancia Magnética , Masculino , Síndrome Metabólico/fisiopatología , Enfermedad del Hígado Graso no Alcohólico
13.
Curr Opin Lipidol ; 25(3): 213-20, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24785962

RESUMEN

PURPOSE OF REVIEW: Different sources of fatty acids (FA) used for VLDL-triglyceride synthesis include dietary FA that clear to the liver via chylomicron uptake, FA synthesized de novo in the liver from carbohydrates, nonesterified fatty acids derived from adipose tissue, nonesterified fatty acids derived from the spillover of chylomicron-triglyceride in the fasted and fed states, and FA stored in liver lipid droplets. RECENT FINDINGS: Data have amassed on the contributions of each of these sources to liver-triglyceride accrual, VLDL-triglyceride synthesis, and hypertriglyceridemia. Discussed here is the timing of use of FA from each of these sources for synthesis of VLDL-triglyceride. Secondly, as all of these FA sources have been shown to contribute significantly to nonalcoholic fatty liver disease (NAFLD), data are presented demonstrating how poor handling of FA and glucose in the periphery can contribute to NAFLD. Lastly, we highlight how the stress of excess FA availability on the liver can be corrected by reduction of dietary intake of sugars and fats, weight loss, and increased physical activity. SUMMARY: A better understanding of how lifestyle factors improve FA flux will aid in the development of improved treatments for the devastating condition of NAFLD.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Grasas de la Dieta/farmacología , Ácidos Grasos/sangre , Ácidos Grasos/farmacología , Lipoproteínas VLDL/sangre , Enfermedad del Hígado Graso no Alcohólico/sangre , Triglicéridos/sangre , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Humanos , Enfermedad del Hígado Graso no Alcohólico/patología
14.
Obesity (Silver Spring) ; 32(4): 678-690, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38439205

RESUMEN

OBJECTIVE: Polycystic ovary syndrome (PCOS) is characterized by hyperandrogenism, insulin resistance, and hepatic steatosis (HS). Because dietary essential amino acid (EAA) supplementation has been shown to decrease HS in various populations, this study's objective was to determine whether supplementation would decrease HS in PCOS. METHODS: A randomized, double-blind, crossover, placebo-controlled trial was conducted in 21 adolescents with PCOS (BMI 37.3 ± 6.5 kg/m2, age 15.6 ± 1.3 years). Liver fat, very low-density lipoprotein (VLDL) lipogenesis, and triacylglycerol (TG) metabolism were measured following each 28-day phase of placebo or EAA. RESULTS: Compared to placebo, EAA was associated with no difference in body weight (p = 0.673). Two markers of liver health improved: HS was lower (-0.8% absolute, -7.5% relative reduction, p = 0.013), as was plasma aspartate aminotransferase (AST) (-8%, p = 0.004). Plasma TG (-9%, p = 0.015) and VLDL-TG (-21%, p = 0.031) were reduced as well. VLDL-TG palmitate derived from lipogenesis was not different between the phases, nor was insulin sensitivity (p > 0.400 for both). Surprisingly, during the EAA phase, participants reported consuming fewer carbohydrates (p = 0.038) and total sugars (p = 0.046). CONCLUSIONS: Similar to studies in older adults, short-term EAA supplementation in adolescents resulted in significantly lower liver fat, AST, and plasma lipids and thus may prove to be an effective treatment in this population. Additional research is needed to elucidate the mechanisms for these effects.


Asunto(s)
Hígado Graso , Hiperandrogenismo , Resistencia a la Insulina , Síndrome del Ovario Poliquístico , Adolescente , Femenino , Humanos , Hiperandrogenismo/complicaciones , Insulina , Lipoproteínas VLDL , Obesidad/complicaciones , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Síndrome del Ovario Poliquístico/complicaciones
15.
Cell Mol Gastroenterol Hepatol ; 18(3): 101365, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38797477

RESUMEN

BACKGROUND & AIMS: Reversion-inducing cysteine-rich protein with Kazal motifs (RECK) is an extracellular matrix regulator with anti-fibrotic effects. However, its expression and role in metabolic dysfunction-associated steatohepatitis (MASH) and hepatic fibrosis are poorly understood. METHODS: We generated a novel transgenic mouse model with RECK overexpression specifically in hepatocytes to investigate its role in Western diet (WD)-induced liver disease. Proteomic analysis and in vitro studies were performed to mechanistically link RECK to hepatic inflammation and fibrosis. RESULTS: Our results show that RECK expression is significantly decreased in liver biopsies from human patients diagnosed with MASH and correlated negatively with severity of metabolic dysfunction-associated steatotic liver disease (MASLD) and fibrosis. Similarly, RECK expression is downregulated in WD-induced MASH in wild-type mice. Hepatocyte-specific RECK overexpression significantly reduced hepatic pathology in WD-induced liver injury. Proteomic analysis highlighted changes in extracellular matrix and cell-signaling proteins. In vitro mechanistic studies linked RECK induction to reduced ADAM10 (a disintegrin and metalloproteinase domain-containing protein 10) and ADAM17 activity, amphiregulin release, epidermal growth factor receptor activation, and stellate cell activation. CONCLUSION: Our in vivo and mechanistic in vitro studies reveal that RECK is a novel upstream regulator of inflammation and fibrosis in the diseased liver, its induction is hepatoprotective, and thus highlights its potential as a novel therapeutic in MASH.

16.
Biochim Biophys Acta ; 1821(5): 721-6, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22281699

RESUMEN

The intake of dietary fat above energy needs has contributed to the growing rates of obesity worldwide. The concept of disease development occurring in the fed state now has much support and dysregulation of substrate flux may occur due to poor handling of dietary fat in the immediate postprandial period. The present paper will review recent observations implicating cephalic phase events in the control of enterocyte lipid transport, the impact of varying the composition of meals on subsequent fat metabolism, and the means by which dietary lipid carried in chylomicrons can lead to elevated postprandial non-esterified fatty acid concentrations. This discussion is followed by an evaluation of the data on quantitative meal fat oxidation at the whole body level and an examination of dietary fat clearance to peripheral tissues - with particular attention paid to skeletal muscle and liver given the role of ectopic lipid deposition in insulin resistance. Estimates derived from data of dietary-TG clearance show good agreement with clearance to the liver equaling 8-12% of meal fat in lean subjects and this number appears higher (10-16%) in subjects with diabetes and fatty liver disease. Finally, we discuss new methods with which to study dietary fatty acid partitioning in vivo. Future research is needed to include a more comprehensive understanding of 1) the potential for differential oxidation of saturated versus unsaturated fatty acids which might lead to meaningful energy deficit and whether this parameter varies based on insulin sensitivity, 2) whether compartmentalization exists for diet-derived fatty acids within tissues vs. intracellular pools, and 3) the role of reduced peripheral fatty acid clearance in the development of fatty liver disease. Further advancements in the quantitation of dietary fat absorption and disposal will be central to the development of therapies designed to treat diet-induced obesity. This article is part of a Special Issue entitled Triglyceride Metabolism and Disease.


Asunto(s)
Grasas de la Dieta/metabolismo , Ingestión de Alimentos , Metabolismo de los Lípidos , Triglicéridos/metabolismo , Enterocitos/metabolismo , Humanos , Hígado/metabolismo , Músculo Esquelético/metabolismo , Obesidad/etiología , Periodo Posprandial
17.
Arterioscler Thromb Vasc Biol ; 32(8): 1799-808, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22723441

RESUMEN

OBJECTIVE: Insulin control of fatty acid metabolism has long been deemed dominated by suppression of adipose lipolysis. The goal of the present study was to test the hypothesis that this single role of insulin is insufficient to explain observed fatty acid dynamics. METHODS AND RESULTS: Fatty acid kinetics were measured during a meal tolerance test and insulin sensitivity assessed by intravenous glucose tolerance test in overweight human subjects (n=15; body mass index, 35.8 ± 7.1 kg/m(2)). Non-steady state tracer kinetic models were formulated and tested using ProcessDB software. Suppression of adipose fatty acid release, by itself, could not account for postprandial nonesterified fatty acid concentration changes, but adipose suppression combined with insulin activation of fatty acid uptake was consistent with the measured data. The observed insulin K(m) for nonesterified fatty acid uptake was inversely correlated with both insulin sensitivity of glucose uptake (intravenous glucose tolerance test insulin sensitivity; r=-0.626; P=0.01) and whole body fat oxidation after the meal (r=-0.538; P=0.05). CONCLUSIONS: These results support insulin regulation of fatty acid turnover by both release and uptake mechanisms. Activation of fatty acid uptake is consistent with the human data, has mechanistic precedent in cell culture, and highlights a new potential target for therapies aimed at improving the control of fatty acid metabolism in insulin-resistant disease states.


Asunto(s)
Ácidos Grasos no Esterificados/metabolismo , Insulina/fisiología , Síndrome Metabólico/metabolismo , Adulto , Anciano , Femenino , Prueba de Tolerancia a la Glucosa , Humanos , Resistencia a la Insulina , Masculino , Persona de Mediana Edad
18.
Obesity (Silver Spring) ; 31(10): 2482-2492, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37593896

RESUMEN

OBJECTIVE: Approved by the Food and Drug Administration (FDA) in 2017 for diabetes and in 2021 for weight loss, semaglutide has seen widespread use among individuals who aim to lose weight. The aim of this study was to evaluate weight loss and the influence of clinical factors on semaglutide patients in real-world clinical practice. METHODS: Using data from 10 health systems within the Greater Plains Collaborative (a PCORnet Clinical Research Network), nearly 4000 clinical factors encompassing demographic, diagnosis, and prescription information were extracted for semaglutide patients. A gradient-boosting, machine-learning classifier was developed for weight-loss prediction and identification of the most impactful factors via SHapley Additive exPlanations (SHAP) value extrapolation. RESULTS: A total of 3555 eligible patients (539 of whom were observed 52 weeks following exposure) from March 2017 to April 2022 were studied. On average, individuals lost 4.44% (male individuals, 3.66%; female individuals, 5.08%) of their initial weight. History of diabetes mellitus diagnosis was associated with less weight loss, whereas prediabetes and linaclotide use were associated with more pronounced weight loss. CONCLUSIONS: Weight loss in patients prescribed semaglutide from real-world evidence was strong but attenuated compared with previous clinical trials. Machine-learning analysis of electronic health record data identified factors that warrant further research and consideration when tailoring weight-loss therapy.


Asunto(s)
Péptidos Similares al Glucagón , Estado Prediabético , Estados Unidos/epidemiología , Humanos , Femenino , Masculino , Péptidos Similares al Glucagón/uso terapéutico , United States Food and Drug Administration , Pérdida de Peso
19.
Front Physiol ; 14: 1172675, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153214

RESUMEN

In vivo methods to estimate human liver mitochondrial activity are lacking and this project's goal was to use a non-invasive breath test to quantify complete mitochondrial fat oxidation and determine how test results changed when liver disease state was altered over time. Patients with suspected non-alcoholic fatty liver disease (NAFLD; 9 men, 16 women, 47 ± 10 years, 113 ± 23 kg) underwent a diagnostic liver biopsy and liver tissue was histologically scored by a pathologist using the NAFLD activity score (0-8). To assess liver oxidation activity, a labeled medium chain fatty acid was consumed orally (23.4 mg 13C4-octanoate) and breath samples collected over 135 min. Total CO2 production rates were measured using breath 13CO2 analysis by isotope ratio mass spectrometry. Fasting endogenous glucose production (EGP) was measured using an IV infusion of 13C6-glucose. At baseline, subjects oxidized 23.4 ± 3.9% (14.9%-31.5%) of the octanoate dose and octanoate oxidation (OctOx) was negatively correlated with fasting plasma glucose (r = -0.474, p = 0.017) and EGP (r = -0.441, p = 0.028). Twenty-two subjects returned for repeat tests 10.2 ± 1.0 months later, following lifestyle treatment or standardized care. OctOx (% dose/kg) was significantly greater across all subjects (p = 0.044), negatively related to reductions in EGP (r = -0.401, p = 0.064), and tended to correlate with reduced fasting glucose (r = -0.371, p = 0.090). Subjects exhibited reductions in steatosis (p = 0.007) which tended to correlate with increased OctOx (% of dose/kg, r = -0.411, p = 0.058). Based on our findings, the use of an 13C-octanoate breath test may be an indicator of hepatic steatosis and glucose metabolism, but these relationships require verification through larger studies in NAFLD populations.

20.
JHEP Rep ; 5(5): 100716, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37035456

RESUMEN

Background & Aims: Non-alcoholic steatohepatitis (NASH)-induced liver fibrosis is emerging as the most common cause of liver disease. For evaluation of therapies, there is a pressing need to identify non-invasive, mechanism-based biomarkers. A pro-fibrotic process relevant to human NASH involves a pathway in which a transcriptional regulator called TAZ (WWTR1) in hepatocytes induces the secretion of pro-fibrotic Indian hedgehog (IHH). We therefore reasoned that circulating IHH may be a useful mechanism-based marker to assess changes in NASH fibrosis. Methods: Circulating IHH was assessed in wild-type and hepatocyte-TAZ-silenced NASH mice and in three separate cohorts of patients with mild-moderate NASH. Results: Circulating IHH was elevated in mice with diet-induced NASH compared with chow-fed mice or with NASH mice in which hepatocyte TAZ was silenced, which is an effective means to decrease NASH fibrosis. In patients with fatty liver disease with or without NASH, NASH fibrosis was associated with increased concentrations of circulating IHH. Conclusions: The results of these analyses support further investigation to determine whether circulating IHH may be useful as a mechanism-based indicator of target engagement in anticipated future clinical trials testing NASH fibrosis therapies that block the IHH pathway. Impact and implications: Non-alcoholic steatohepatitis (NASH)-induced liver fibrosis is a common cause of liver disease. Circulating biomarkers that reflect liver fibrosis in NASH would be very useful to evaluate therapies. One mechanism of NASH fibrosis with potential as a therapeutic target involves a liver-secreted protein called Indian hedgehog (IHH). We report that circulating levels of IHH in experimental and human NASH associates with NASH and NASH-associated liver fibrosis, providing the premise for further investigation into using circulating IHH to evaluate anticipated future NASH therapies that block the IHH pathway in liver.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA