Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Exp Bot ; 70(1): 217-230, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30312429

RESUMEN

The shoot system of pines contains abundant resin ducts, which harbor oleoresins that play important roles in constitutive and inducible defenses. In a pilot study, we assessed the chemical diversity of oleoresins obtained from mature tissues of loblolly pine trees (Pinus taeda L.). Building on these data sets, we designed experiments to assess oleoresin biosynthesis in needles of 2-year-old saplings. Comparative transcriptome analyses of single cell types indicated that genes involved in the biosynthesis of oleoresins are significantly enriched in isolated epithelial cells of resin ducts, compared with those expressed in mesophyll cells. Simulations using newly developed genome-scale models of epithelial and mesophyll cells, which incorporate our data on oleoresin yield and composition as well as gene expression patterns, predicted that heterotrophic metabolism in epithelial cells involves enhanced levels of oxidative phosphorylation and fermentation (providing redox and energy equivalents). Furthermore, flux was predicted to be more evenly distributed across the metabolic network of mesophyll cells, which, in contrast to epithelial cells, do not synthesize high levels of specialized metabolites. Our findings provide novel insights into the remarkable specialization of metabolism in epithelial cells.


Asunto(s)
Pinus taeda/metabolismo , Extractos Vegetales/biosíntesis , Proteínas de Plantas/metabolismo , Transcriptoma , Perfilación de la Expresión Génica , Genes de Plantas , Proyectos Piloto , Extractos Vegetales/química , Hojas de la Planta/metabolismo
2.
Plant Physiol ; 175(1): 92-103, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28751314

RESUMEN

Adventitious root cultures were developed from Tripterygium regelii, and growth conditions were optimized for the abundant production of diterpenoids, which can be collected directly from the medium. An analysis of publicly available transcriptome data sets collected with T. regelii roots and root cultures indicated the presence of a large gene family (with 20 members) for terpene synthases (TPSs). Nine candidate diterpene synthase genes were selected for follow-up functional evaluation, of which two belonged to the TPS-c, three to the TPS-e/f, and four to the TPS-b subfamilies. These genes were characterized by heterologous expression in a modular metabolic engineering system in Escherichia coli Members of the TPS-c subfamily were characterized as copalyl diphosphate (diterpene) synthases, and those belonging to the TPS-e/f subfamily catalyzed the formation of precursors of kaurane diterpenoids. The TPS-b subfamily encompassed genes coding for enzymes involved in abietane diterpenoid biosynthesis and others with activities as monoterpene synthases. The structural characterization of diterpenoids accumulating in the medium of T. regelii adventitious root cultures, facilitated by searching the Spektraris online spectral database, enabled us to formulate a biosynthetic pathway for the biosynthesis of triptolide, a diterpenoid with pharmaceutical potential. Considering the significant enrichment of diterpenoids in the culture medium, fast-growing adventitious root cultures may hold promise as a sustainable resource for the large-scale production of triptolide.


Asunto(s)
Técnicas de Cultivo , Diterpenos/metabolismo , Fenantrenos/metabolismo , Raíces de Plantas/metabolismo , Tripterygium/metabolismo , Compuestos Epoxi/metabolismo
3.
Front Plant Sci ; 14: 1125065, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37123862

RESUMEN

Above-ground material of members of the mint family is commercially distilled to extract essential oils, which are then formulated into a myriad of consumer products. Most of the research aimed at characterizing the processes involved in the formation of terpenoid oil constituents has focused on leaves. We now demonstrate, by investigating three mint species, peppermint (Mentha Ë£ piperita L.), spearmint (Mentha spicata L.) and horsemint (Mentha longifolia (L.) Huds.; accessions CMEN 585 and CMEN 584), that other organs - namely stems, rhizomes and roots - also emit volatiles and that the terpenoid volatile composition of these organs can vary substantially from that of leaves, supporting the notion that substantial, currently underappreciated, chemical diversity exists. Differences in volatile quantities released by plants whose roots had been dipped in a Verticillium dahliae-spore suspension (experimental) or dipped in water (controls) were evident: increases of some volatiles in the root headspace of mint species that are susceptible to Verticillium wilt disease (peppermint and M. longifolia CMEN 584) were detected, while the quantities of certain volatiles decreased in rhizomes of species that show resistance to the disease (spearmint and M. longifolia CMEN 585). To address the genetic and biochemical basis underlying chemical diversity, we took advantage of the newly sequenced M. longifolia CMEN 585 genome to identify candidate genes putatively coding for monoterpene synthases (MTSs), the enzymes that catalyze the first committed step in the biosynthesis of monoterpenoid volatiles. The functions of these genes were established by heterologous expression in Escherichia coli, purification of the corresponding recombinant proteins, and enzyme assays, thereby establishing the existence of MTSs with activities to convert a common substrate, geranyl diphosphate, to (+)-α-terpineol, 1,8-cineole, γ-terpinene, and (-)-bornyl diphosphate, but were not active with other potential substrates. In conjunction with previously described MTSs that catalyze the formation of (-)-ß-pinene and (-)-limonene, the product profiles of the MTSs identified here can explain the generation of all major monoterpene skeletons represented in the volatiles released by different mint organs.

4.
Metabolites ; 12(5)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35629907

RESUMEN

Three species of the genus Equisetum (E. arvense, E. hyemale, and E. telmateia) were selected for an analysis of chemical diversity in an ancient land plant lineage. Principal component analysis of metabolomics data obtained with above-ground shoot and below-ground rhizome extracts enabled a separation of all sample types, indicating species- and organ-specific patterns of metabolite accumulation. Follow-up efforts indicated that galactolipids, carotenoids, and flavonoid glycosides contributed positively to the separation of shoot samples, while stryrylpyrone glycosides and phenolic glycosides were the most prominent positive contributors to the separation of rhizome samples. Consistent with metabolite data, genes coding for enzymes of flavonoid and galactolipid biosynthesis were found to be expressed at elevated levels in shoot samples, whereas a putative styrylpyrone synthase gene was expressed preferentially in rhizomes. The current study builds a foundation for future endeavors to further interrogate the organ and tissue specificity of metabolism in the last living genus of a fern family that was prevalent in the forests of the late Paleozoic era.

5.
G3 (Bethesda) ; 12(8)2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35551385

RESUMEN

Mentha longifolia (L.) Huds., a wild, diploid mint species, has been developed as a model for mint genetic and genomic research to aid breeding efforts that target Verticillium wilt disease resistance and essential oil monoterpene composition. Here, we present a near-complete, chromosome-scale mint genome assembly for M. longifolia USDA accession CMEN 585. This new assembly is an update of a previously published genome draft, with dramatic improvements. A total of 42,107 protein-coding genes were annotated and placed on 12 chromosomal scaffolds. One hundred fifty-three genes contained conserved sequence domains consistent with nucleotide binding site-leucine-rich-repeat plant disease resistance genes. Homologs of genes implicated in Verticillium wilt resistance in other plant species were also identified. Multiple paralogs of genes putatively involved in p-menthane monoterpenoid biosynthesis were identified and several cases of gene clustering documented. Heterologous expression of candidate genes, purification of recombinant target proteins, and subsequent enzyme assays allowed us to identify the genes underlying the pathway that leads to the most abundant monoterpenoid volatiles. The bioinformatic and functional analyses presented here are laying the groundwork for using marker-assisted selection in improving disease resistance and essential oil traits in mints.


Asunto(s)
Mentha , Aceites Volátiles , Verticillium , Cromosomas , Resistencia a la Enfermedad/genética , Mentha/química , Mentha/genética , Mentha/metabolismo , Monoterpenos/análisis , Monoterpenos/metabolismo , Aceites Volátiles/metabolismo , Fitomejoramiento , Verticillium/genética
6.
Phytochemistry ; 150: 23-30, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29533838

RESUMEN

Schizonepeta tenuifolia Briquet, commonly known as Japanese catnip, is used for the treatment of colds, headaches, fevers, and skin rashes in traditional Asian medicine (China, Japan and Korea). The volatile oil and its constituents have various demonstrated biological activities, but there is currently limited information regarding the site of biosynthesis. Light microscopy and scanning electron microscopy indicated the presence of three distinct glandular trichome types which, based on their morphological features, are referred to as peltate, capitate and digitiform glandular trichomes. Laser scanning microscopy and 3D reconstruction demonstrated that terpenoid-producing peltate glandular trichomes contain a disk of twelve secretory cells. The oil of peltate glandular trichomes, collected by laser microdissection or using custom-made micropipettes, was demonstrated to contain (-)-pulegone, (+)-menthone and (+)-limonene as major constituents. Digitiform and capitate glandular trichomes did not contain appreciable levels of terpenoid volatiles. The yield of distilled oil from spikes was significantly (44%) higher than that from leaves, while the composition of oils was very similar. Oils collected directly from leaf peltate glandular trichomes over the course of a growing season contained primarily (-)-pulegone (>80% at 32 days after germination) in young plants, while (+)-menthone began to accumulate later (>75% at 80 days after germination), at the expense of (-)-pulegone (the levels of (+)-limonene remained fairly stable at 3-5%). The current study establishes the morphological and chemical characteristics of glandular trichome types of S. tenuifolia, and also provides the basis for unraveling the biosynthesis of essential oil in this popular medicinal plant.


Asunto(s)
Nepeta/química , Plantas Medicinales/química , Tricomas/química , Cromatografía de Gases , Monoterpenos Ciclohexánicos , Ciclohexenos/química , Japón , Limoneno , Medicina Tradicional , Mentol/química , Monoterpenos/química , Monoterpenos/metabolismo , Aceites Volátiles/análisis , Hojas de la Planta/química , Estereoisomerismo , Terpenos/química
7.
Mol Plant ; 10(2): 323-339, 2017 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-27867107

RESUMEN

The genus Mentha encompasses mint species cultivated for their essential oils, which are formulated into a vast array of consumer products. Desirable oil characteristics and resistance to the fungal disease Verticillium wilt are top priorities for the mint industry. However, cultivated mints have complex polyploid genomes and are sterile. Breeding efforts, therefore, require the development of genomic resources for fertile mint species. Here, we present draft de novo genome and plastome assemblies for a wilt-resistant South African accession of Mentha longifolia (L.) Huds., a diploid species ancestral to cultivated peppermint and spearmint. The 353 Mb genome contains 35 597 predicted protein-coding genes, including 292 disease resistance gene homologs, and nine genes determining essential oil characteristics. A genetic linkage map ordered 1397 genome scaffolds on 12 pseudochromosomes. More than two million simple sequence repeats were identified, which will facilitate molecular marker development. The M. longifolia genome is a valuable resource for both metabolic engineering and molecular breeding. This is exemplified by employing the genome sequence to clone and functionally characterize the promoters in a peppermint cultivar, and demonstrating the utility of a glandular trichome-specific promoter to increase expression of a biosynthetic gene, thereby modulating essential oil composition.


Asunto(s)
Genoma de Planta , Mentha/genética , Secuencia de Bases , Fitomejoramiento , Enfermedades de las Plantas/genética , Regiones Promotoras Genéticas
8.
Aquat Toxicol ; 144-145: 75-82, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24157719

RESUMEN

Natural variation in the antioxidant-enzyme SOD-1 (superoxide dismutase) is known to alter the impacts of oxidative damage at both the cellular and organismal levels. Using three homozygous clonal lines of rainbow trout [Hot Creek (n=30), Arlee (n=21), and Swanson (n=10)], which differ for single nucleotide polymorphisms (SNPs) and amino acid substitutions at the SOD-1 locus, we investigated the functional effects of this variation on SOD-1 activity during ozone stress and subsequent levels of oxidative damage to DNA and cell membranes. Fish from each line were subjected to either control conditions or 24h of ozone stress, after which tissues were analyzed for antioxidant status and oxidative damage. Liver SOD-1 activity was lower in ozonated vs. control fish in the Hot Creek line, and among ozonated fish, Hot Creek was lower than Arlee. Total erythrocyte SOD activity was not significantly impacted by ozonation; however significant differences in total erythrocyte SOD activity were measured among clonal lines, driven primarily by lower activity in the Hot Creek line. Ozone had a significant treatment effect in all oxidative damage parameters assessed: it increased DNA lesions in erythrocytes and levels of lipid peroxidation in gill tissue and plasma. Among lines, Swanson showed higher lipid peroxidation levels in gill tissue after ozonation than Arlee or Hot Creek. Conversely, Swanson control and treatment fish had significantly lower plasma lipid peroxidation levels than did fish from the other lines. Overall, the among-line differences in SOD and SOD-1 activity and oxidative damage provide evidence that SOD-1 genotypes differ functionally under both oxidative stress and control conditions; however, other genetic differences among lines should be investigated in order to further explain the phenotypic differences in SOD enzyme activity and oxidative damage described here.


Asunto(s)
Oncorhynchus mykiss/genética , Oncorhynchus mykiss/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ozono/toxicidad , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Animales , Daño del ADN/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Eritrocitos/enzimología , Genotipo , Branquias/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/enzimología , Estrés Oxidativo/genética , Sustancias Reactivas al Ácido Tiobarbitúrico/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA