Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Am J Hum Genet ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39079537

RESUMEN

Transcriptome-wide association study (TWAS) tools have been applied to conduct proteome-wide association studies (PWASs) by integrating proteomics data with genome-wide association study (GWAS) summary data. The genetic effects of PWAS-identified significant genes are potentially mediated through genetically regulated protein abundance, thus informing the underlying disease mechanisms better than GWAS loci. However, existing TWAS/PWAS tools are limited by considering only one statistical model. We propose an omnibus PWAS pipeline to account for multiple statistical models and demonstrate improved performance by simulation and application studies of Alzheimer disease (AD) dementia. We employ the Aggregated Cauchy Association Test to derive omnibus PWAS (PWAS-O) p values from PWAS p values obtained by three existing tools assuming complementary statistical models-TIGAR, PrediXcan, and FUSION. Our simulation studies demonstrated improved power, with well-calibrated type I error, for PWAS-O over all three individual tools. We applied PWAS-O to studying AD dementia with reference proteomic data profiled from dorsolateral prefrontal cortex of postmortem brains from individuals of European ancestry. We identified 43 risk genes, including 5 not identified by previous studies, which are interconnected through a protein-protein interaction network that includes the well-known AD risk genes TOMM40, APOC1, and APOC2. We also validated causal genetic effects mediated through the proteome for 27 (63%) PWAS-O risk genes, providing insights into the underlying biological mechanisms of AD dementia and highlighting promising targets for therapeutic development. PWAS-O can be easily applied to studying other complex diseases.

2.
medRxiv ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37425698

RESUMEN

Multiple reference panels of a given tissue or multiple tissues often exist, and multiple regression methods could be used for training gene expression imputation models for TWAS. To leverage expression imputation models (i.e., base models) trained with multiple reference panels, regression methods, and tissues, we develop a Stacked Regression based TWAS (SR-TWAS) tool which can obtain optimal linear combinations of base models for a given validation transcriptomic dataset. Both simulation and real studies showed that SR-TWAS improved power, due to increased effective training sample sizes and borrowed strength across multiple regression methods and tissues. Leveraging base models across multiple reference panels, tissues, and regression methods, our real application studies identified 6 independent significant risk genes for Alzheimer's disease (AD) dementia for supplementary motor area tissue and 9 independent significant risk genes for Parkinson's disease (PD) for substantia nigra tissue. Relevant biological interpretations were found for these significant risk genes.

3.
Nat Commun ; 15(1): 6646, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103319

RESUMEN

Multiple reference panels of a given tissue or multiple tissues often exist, and multiple regression methods could be used for training gene expression imputation models for transcriptome-wide association studies (TWAS). To leverage expression imputation models (i.e., base models) trained with multiple reference panels, regression methods, and tissues, we develop a Stacked Regression based TWAS (SR-TWAS) tool which can obtain optimal linear combinations of base models for a given validation transcriptomic dataset. Both simulation and real studies show that SR-TWAS improves power, due to increased training sample sizes and borrowed strength across multiple regression methods and tissues. Leveraging base models across multiple reference panels, tissues, and regression methods, our real studies identify 6 independent significant risk genes for Alzheimer's disease (AD) dementia for supplementary motor area tissue and 9 independent significant risk genes for Parkinson's disease (PD) for substantia nigra tissue. Relevant biological interpretations are found for these significant risk genes.


Asunto(s)
Enfermedad de Alzheimer , Estudio de Asociación del Genoma Completo , Aprendizaje Automático , Enfermedad de Parkinson , Transcriptoma , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Parkinson/genética , Estudio de Asociación del Genoma Completo/métodos , Perfilación de la Expresión Génica/métodos , Predisposición Genética a la Enfermedad , Sustancia Negra/metabolismo , Demencia/genética
4.
HGG Adv ; 3(1): 100068, 2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35047855

RESUMEN

Standard transcriptome-wide association study (TWAS) methods first train gene expression prediction models using reference transcriptomic data and then test the association between the predicted genetically regulated gene expression and phenotype of interest. Most existing TWAS tools require cumbersome preparation of genotype input files and extra coding to enable parallel computation. To improve the efficiency of TWAS tools, we developed Transcriptome-Integrated Genetic Association Resource V2 (TIGAR-V2), which directly reads Variant Call Format (VCF) files, enables parallel computation, and reduces up to 90% of computation cost (mainly due to loading genotype data) compared to the original version. TIGAR-V2 can train gene expression imputation models using either nonparametric Bayesian Dirichlet process regression (DPR) or Elastic-Net (as used by PrediXcan), perform TWASs using either individual-level or summary-level genome-wide association study (GWAS) data, and implement both burden and variance-component statistics for gene-based association tests. We trained gene expression prediction models by DPR for 49 tissues using Genotype-Tissue Expression (GTEx) V8 by TIGAR-V2 and illustrated the usefulness of these Bayesian cis-expression quantitative trait locus (eQTL) weights through TWASs of breast and ovarian cancer utilizing public GWAS summary statistics. We identified 88 and 37 risk genes, respectively, for breast and ovarian cancer, most of which are either known or near previously identified GWAS (∼95%) or TWAS (∼40%) risk genes and three novel independent TWAS risk genes with known functions in carcinogenesis. These findings suggest that TWASs can provide biological insight into the transcriptional regulation of complex diseases. The TIGAR-V2 tool, trained Bayesian cis-eQTL weights, and linkage disequilibrium (LD) information from GTEx V8 are publicly available, providing a useful resource for mapping risk genes of complex diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA