Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(6): 1047-1060, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38776927

RESUMEN

Lichen planus (LP) is a T-cell-mediated inflammatory disease affecting squamous epithelia in many parts of the body, most often the skin and oral mucosa. Cutaneous LP is usually transient and oral LP (OLP) is most often chronic, so we performed a large-scale genetic and epidemiological study of LP to address whether the oral and non-oral subgroups have shared or distinct underlying pathologies and their overlap with autoimmune disease. Using lifelong records covering diagnoses, procedures, and clinic identity from 473,580 individuals in the FinnGen study, genome-wide association analyses were conducted on carefully constructed subcategories of OLP (n = 3,323) and non-oral LP (n = 4,356) and on the combined group. We identified 15 genome-wide significant associations in FinnGen and an additional 12 when meta-analyzed with UKBB (27 independent associations at 25 distinct genomic locations), most of which are shared between oral and non-oral LP. Many associations coincide with known autoimmune disease loci, consistent with the epidemiologic enrichment of LP with hypothyroidism and other autoimmune diseases. Notably, a third of the FinnGen associations demonstrate significant differences between OLP and non-OLP. We also observed a 13.6-fold risk for tongue cancer and an elevated risk for other oral cancers in OLP, in agreement with earlier reports that connect LP with higher cancer incidence. In addition to a large-scale dissection of LP genetics and comorbidities, our study demonstrates the use of comprehensive, multidimensional health registry data to address outstanding clinical questions and reveal underlying biological mechanisms in common but understudied diseases.


Asunto(s)
Enfermedades Autoinmunes , Estudio de Asociación del Genoma Completo , Liquen Plano Oral , Neoplasias de la Boca , Humanos , Enfermedades Autoinmunes/genética , Liquen Plano Oral/genética , Liquen Plano Oral/patología , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Femenino , Masculino , Heterogeneidad Genética , Persona de Mediana Edad , Liquen Plano/genética , Liquen Plano/patología , Predisposición Genética a la Enfermedad , Anciano , Adulto , Factores de Riesgo , Polimorfismo de Nucleótido Simple
2.
PLoS Comput Biol ; 20(9): e1011718, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39283896

RESUMEN

In addition to the classical HLA genes, the major histocompatibility complex (MHC) harbors a high number of other polymorphic genes with less established roles in disease associations and transplantation matching. To facilitate studies of the non-classical and non-HLA genes in large patient and biobank cohorts, we trained imputation models for MICA, MICB, HLA-E, HLA-F and HLA-G alleles on genome SNP array data. We show, using both population-specific and multi-population 1000 Genomes references, that the alleles of these genes can be accurately imputed for screening and research purposes. The best imputation model for MICA, MICB, HLA-E, -F and -G achieved a mean accuracy of 99.3% (min, max: 98.6, 99.9). Furthermore, validation of the 1000 Genomes exome short-read sequencing-based allele calling against a clinical-grade reference data showed an average accuracy of 99.8%, testifying for the quality of the 1000 Genomes data as an imputation reference. We also fitted the models for Infinium Global Screening Array (GSA, Illumina, Inc.) and Axiom Precision Medicine Research Array (PMRA, Thermo Fisher Scientific Inc.) SNP content, with mean accuracies of 99.1% (97.2, 100) and 98.9% (97.4, 100), respectively.


Asunto(s)
Alelos , Antígenos de Histocompatibilidad Clase I , Polimorfismo de Nucleótido Simple , Humanos , Polimorfismo de Nucleótido Simple/genética , Antígenos de Histocompatibilidad Clase I/genética , Genoma Humano/genética , Antígenos HLA-E , Biología Computacional/métodos
3.
PLoS Comput Biol ; 20(3): e1011977, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38512997

RESUMEN

A key element for successful blood transfusion is compatibility of the patient and donor red blood cell (RBC) antigens. Precise antigen matching reduces the risk for immunization and other adverse transfusion outcomes. RBC antigens are encoded by specific genes, which allows developing computational methods for determining antigens from genomic data. We describe here a classification method for determining RBC antigens from genotyping array data. Random forest models for 39 RBC antigens in 14 blood group systems and for human platelet antigen (HPA)-1 were trained and tested using genotype and RBC antigen and HPA-1 typing data available for 1,192 blood donors in the Finnish Blood Service Biobank. The algorithm and models were further evaluated using a validation cohort of 111,667 Danish blood donors. In the Finnish test data set, the median (interquartile range [IQR]) balanced accuracy for 39 models was 99.9 (98.9-100)%. We were able to replicate 34 out of 39 Finnish models in the Danish cohort and the median (IQR) balanced accuracy for classifications was 97.1 (90.1-99.4)%. When applying models trained with the Danish cohort, the median (IQR) balanced accuracy for the 40 Danish models in the Danish test data set was 99.3 (95.1-99.8)%. The RBC antigen and HPA-1 prediction models demonstrated high overall accuracies suitable for probabilistic determination of blood groups and HPA-1 at biobank-scale. Furthermore, population-specific training cohort increased the accuracies of the models. This stand-alone and freely available method is applicable for research and screening for antigen-negative blood donors.


Asunto(s)
Antígenos de Plaqueta Humana , Antígenos de Grupos Sanguíneos , Humanos , Antígenos de Grupos Sanguíneos/genética , Bancos de Muestras Biológicas , Tipificación y Pruebas Cruzadas Sanguíneas , Genotipo , Transfusión Sanguínea , Antígenos de Plaqueta Humana/genética
4.
Transfusion ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39268576

RESUMEN

BACKGROUND: Deep learning methods are revolutionizing natural science. In this study, we aim to apply such techniques to develop blood type prediction models based on cheap to analyze and easily scalable screening array genotyping platforms. METHODS: Combining existing blood types from blood banks and imputed screening array genotypes for ~111,000 Danish and 1168 Finnish blood donors, we used deep learning techniques to train and validate blood type prediction models for 36 antigens in 15 blood group systems. To account for missing genotypes a denoising autoencoder initial step was utilized, followed by a convolutional neural network blood type classifier. RESULTS: Two thirds of the trained blood type prediction models demonstrated an F1-accuracy above 99%. Models for antigens with low or high frequencies like, for example, Cw, low training cohorts like, for example, Cob, or very complicated genetic underpinning like, for example, RhD, proved to be more challenging for high accuracy (>99%) DL modeling. However, in the Danish cohort only 4 out of 36 models (Cob, Cw, D-weak, Kpa) failed to achieve a prediction F1-accuracy above 97%. This high predictive performance was replicated in the Finnish cohort. DISCUSSION: High accuracy in a variety of blood groups proves viability of deep learning-based blood type prediction using array chip genotypes, even in blood groups with nontrivial genetic underpinnings. These techniques are suitable for aiding in identifying blood donors with rare blood types by greatly narrowing down the potential pool of candidate donors before clinical grade confirmation.

5.
Cytometry A ; 103(10): 807-817, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37276178

RESUMEN

Imaging flow cytometry (IFC) combines flow cytometry with microscopy, allowing rapid characterization of cellular and molecular properties via high-throughput single-cell fluorescent imaging. However, fluorescent labeling is costly and time-consuming. We present a computational method called DeepIFC based on the Inception U-Net neural network architecture, able to generate fluorescent marker images and learn morphological features from IFC brightfield and darkfield images. Furthermore, the DeepIFC workflow identifies cell types from the generated fluorescent images and visualizes the single-cell features generated in a 2D space. We demonstrate that rarer cell types are predicted well when a balanced data set is used to train the model, and the model is able to recognize red blood cells not seen during model training as a distinct entity. In summary, DeepIFC allows accurate cell reconstruction, typing and recognition of unseen cell types from brightfield and darkfield images via virtual fluorescent labeling.

6.
Int J Mol Sci ; 23(7)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35408797

RESUMEN

Infertility is assumed to arise exclusively from male- and female-dependent pathological factors. However, recent studies have indicated that reproductive failure may also result from the reproductive incompatibility of the partners. Selection against such incompatibilities likely occurs via female-derived reproductive secretions, including follicular fluid (FF), that mediate gamete-level mate choice towards the sperm of specific males. To facilitate potential development of diagnostic tests for human reproductive incompatibility, we examined whether sperm physiological response to female serum indicate male-female compatibility in the presence of FF. We performed a full-factorial experiment, in which the sperm of 10 males were treated with the FF and serum of 6 healthy females. We found that sperm motility and viability in both biofluids were highly similar and that in 70% of the males, sperm serum treatment predicted male-female compatibility. We also identified male human leucocyte antigen (HLA) alleles and female (FF and serum) anti-HLA antibodies and tested whether the number of allele-antibody matches predict sperm physiological response to female fluids. However, no association was found between measured sperm traits and the number of allele-antibody matches. Overall, the present results may open novel possibilities for the future development of reproductive incompatibility tests and may pave the way towards more accurate infertility diagnostics and treatments.


Asunto(s)
Infertilidad , Motilidad Espermática , Femenino , Células Germinativas , Humanos , Masculino , Reproducción , Espermatozoides/fisiología
7.
J Evol Biol ; 34(7): 1125-1132, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34056789

RESUMEN

Human leucocyte antigen (HLA) genes appear to mediate pre- and post-copulatory mate choice towards HLA-dissimilar ('compatible') partners. However, since genetically distinct alleles often have similar immunogenic properties, genetic dissimilarity is not necessarily an accurate predictor of the functional compatibility of HLA alleles and, hence, may not reflect partners' true compatibility. Furthermore, it has remained unclear whether other genes of the immune system could also play a role in male-female compatibility. We studied whether the immunoglobulin binding regions (eplets) of HLA molecules and the immunoglobulin structural dissimilarity of the partners affect their gamete-level compatibility. We exposed sperm of multiple men to follicular fluid or cervical mucus of multiple women and tested whether sperm viability in these reproductive secretions was influenced by HLA eplet and immunoglobulin structural dissimilarity between partners. We found that eplet dissimilarity positively affects sperm viability in follicular fluid, whereas immunoglobulin dissimilarity enhanced sperm viability in cervical mucus. Together, these findings indicate that structural characteristics of both HLA alleles and immunoglobulins may facilitate cryptic female choice towards immunologically compatible partners. Our results, thus, indicate that partners' genetic compatibility may have wider immunological basis than traditionally has been assumed. Relative contribution of different immunogenetic factors to overall compatibility of the reproductive partners needs to be clarified in future studies.


Asunto(s)
Reproducción , Espermatozoides , Alelos , Femenino , Células Germinativas , Humanos , Masculino , Reproducción/genética
8.
Vox Sang ; 116(10): 1042-1050, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33853204

RESUMEN

BACKGROUND AND OBJECTIVES: Frequent blood donation depletes iron stores of blood donors. Iron depletion may lead to anaemia, but the health effects of iron depletion without anaemia in healthy blood donors are not well understood. We studied in the FinDonor cohort whether worsening of self-rated health of blood donors during the study period was associated with biomarkers for iron levels or other self-reported changes in lifestyle. MATERIALS AND METHODS: We included 1416 participants from the cohort who answered an 89-item questionnaire on their health and lifestyle during their enrolment visit and again at the end of the study. We performed multivariate logistic regression to test if blood donation-related factors affected the probability of reporting worsened health. To set these findings into a more holistic context of health, we subsequently analysed all other questionnaire items with a data-driven exploratory analysis. RESULTS: We found that donation frequency in men and post-menopausal women and ferritin level only in men was associated negatively with worsened health between questionnaires. In the exploratory analysis, stable physical condition was the only questionnaire item that was associated negatively with worsened health in both women and men. CONCLUSION: Our results suggest that low ferritin level is associated with worsened health even in non-anaemic repeat donors, although we find that when health is analysed more holistically, ferritin and other factors primarily related to blood donation lose their importance.


Asunto(s)
Anemia Ferropénica , Donantes de Sangre , Estudios de Cohortes , Femenino , Ferritinas , Humanos , Hierro , Masculino
9.
Proc Biol Sci ; 287(1933): 20201682, 2020 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-32811307

RESUMEN

Several studies have demonstrated that women show pre-copulatory mating preferences for human leucocyte antigen (HLA)-dissimilar men. A fascinating, yet unexplored, possibility is that the ultimate mating bias towards HLA-dissimilar partners could occur after copulation, at the gamete level. Here, we explored this possibility by investigating whether the selection towards HLA-dissimilar partners occurs in the cervical mucus. After combining sperm and cervical mucus from multiple males and females (full factorial design), we found that sperm performance (swimming velocity, hyperactivation, and viability) was strongly influenced by the male-female combination. This indicates that sperm fertilization capability may be dependent on the compatibility between cervical mucus (female) and sperm (male). We also found that sperm viability was associated with partners' HLA dissimilarity, indicating that cervical mucus may selectively facilitate later gamete fusion between immunogenetically compatible partners. Together, these results provide novel insights into the female-mediated sperm selection (cryptic female choice) in humans and indicate that processes occurring after copulation may contribute to the mating bias towards HLA-dissimilar partners. Finally, by showing that sperm performance in cervical mucus is influenced by partners' genetic compatibility, the present findings may promote a deeper understanding of infertility.


Asunto(s)
Moco del Cuello Uterino/fisiología , Antígenos HLA/fisiología , Espermatozoides/fisiología , Humanos , Infertilidad , Masculino , Reproducción
10.
Heredity (Edinb) ; 125(5): 281-289, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32747723

RESUMEN

Human leukocyte antigen (HLA) immune genes play an important role in partner selection, but it has remained unclear if nonrandom pairing with respect to parental HLA genes could occur at the level of the gametes. We tested this possibility by investigating whether the sperm fertilization competence in humans is dependent on HLA genotype combination of the partners. We conducted a full-factorial experiment, in which the sperm physiological preparation for fertilization among multiple males was studied in the presence of follicular fluid (oocyte surrounding bioactive liquid) of several females. All the studied sperm pre-fertilization physiological parameters (motility, hyperactivation, acrosome reaction, and viability) were strongly dependent on male-female combination. In other words, follicular fluids (women) that induce strong sperm physiological response in some males often induce much weaker response in the other(s). Sperm physiological responses were stronger in HLA-dissimilar male-female pairs than in HLA-similar combinations, but none of the measured sperm traits were associated with genome-wide similarity. Together, these findings shed new light on the evolutionary and immunological mechanisms of fertilization. Furthermore, our results raise an intriguing possibility that against currently prevailing WHO's definition, infertility may not represent exclusively a pathological condition, but may also result from immunogenetic incompatibility of the gametes.


Asunto(s)
Células Germinativas/inmunología , Inmunogenética , Infertilidad , Espermatozoides/inmunología , Femenino , Fertilización/genética , Humanos , Modelos Lineales , Masculino , Modelos Genéticos
11.
Vox Sang ; 115(1): 36-46, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31657023

RESUMEN

BACKGROUND AND OBJECTIVES: There is increasing evidence that frequent blood donation depletes the iron stores of some blood donors. The FinDonor 10 000 study was set up to study iron status and factors affecting iron stores in Finnish blood donors. In Finland, iron supplementation for at-risk groups has been in place since the 1980s. MATERIAL AND METHODS: A total of 2584 blood donors (N = 8003 samples) were recruited into the study alongside standard donation at three donation sites in the capital region of Finland between 5/2015 and 12/2017. All participants were asked to fill out a questionnaire about their health and lifestyle. Blood samples were collected from the sample pouch of whole blood collection set, kept in cool temperature and processed centrally. Whole blood count, CRP, ferritin and sTFR were measured from the samples, and DNA was isolated for GWAS studies. RESULTS: Participant demographics, albeit in general similar to the general blood donor population in Finland, indicated some bias towards older and more frequent donors. Participation in the study increased median donation frequency of the donors. Analysis of the effect of time lag from the sampling to the analysis and the time of day when sample was drawn revealed small but significant time-dependent changes. CONCLUSION: The FinDonor cohort now provides us with tools to identify potential donor groups at increased risk of iron deficiency and factors explaining this risk. The increase in donation frequency during the study suggests that scientific projects can be used to increase the commitment of blood donors.


Asunto(s)
Donantes de Sangre/estadística & datos numéricos , Ferritinas/sangre , Hierro/sangre , Adulto , Estudios de Cohortes , Femenino , Finlandia , Humanos , Deficiencias de Hierro , Masculino , Persona de Mediana Edad
12.
Biol Blood Marrow Transplant ; 25(5): 891-898, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30592985

RESUMEN

HLA matching is a prerequisite for successful allogeneic hematopoietic stem cell transplantation (HSCT) because it lowers the occurrence and severity of graft-versus-host disease (GVHD). However, matching a few alleles of the classic HLA genes only may not ensure matching of the entire MHC region. HLA haplotype matching has been reported to be beneficial in HSCT because of the variation relevant to GVHD risk in the non-HLA region. Because polymorphism in the MHC is highly population specific, we hypothesized that donors from the Finnish registry are more likely to be matched at a higher level for the Finnish patients than donors from other registries. In the present study we determined 25 single nucleotide polymorphisms (SNPs) of the complement component 4 (C4) gene in the γ-block segment of MHC from 115 Finnish HSCT patients and their Finnish (n = 201) and non-Finnish (n = 280) donor candidates. Full matching of HLA alleles and C4 SNPs, independently or additively, occurred more likely in the Finnish-Finnish group as compared with the Finnish-non-Finnish group (P < .003). This was most striking in cases with HLA haplotypes typical of the Finnish population. Patients with ancestral HLA haplotypes (AH) were more likely to find a full HLA and C4 matched donor, regardless of donor origin, as compared with patients without AH (P < .0001). Despite the clear differences at the population level, we could not find a statistical association between C4 matching and clinical outcome. The results suggest that screening C4 SNPs can be advantageous when an extended MHC matching or HLA haplotype matching in HSCT is required. This study also supports the need for small population-specific stem cell registries.


Asunto(s)
Complemento C4/genética , Trasplante de Células Madre Hematopoyéticas/métodos , Histocompatibilidad/inmunología , Donante no Emparentado , Adulto , Complemento C4/inmunología , Finlandia , Haplotipos/genética , Haplotipos/inmunología , Humanos , Polimorfismo de Nucleótido Simple , Sistema de Registros
13.
Transfusion ; 58(7): 1640-1646, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29572859

RESUMEN

BACKGROUND: Increasing numbers of blood donors are recruited to participate in biomedical research. As blood services depend on voluntary donors, successful recruitment calls for a better understanding of donors' expectations and attitudes toward the use of samples in research. STUDY DESIGN AND METHODS: Sixty-one semistructured interviews were conducted with blood donors at eight Finnish Red Cross Blood Service donation sites in Finland. The 10- to 30-minute interviews included open-ended questions about donors' views on blood donation for patients and for biomedical research. Central motives to donate blood for patients were identified against which views on research use were compared to see how these reflections differed. RESULTS: Six central motives for donating blood for patients were identified among donors. The interviewees were, in general, willing to donate blood for research, but considered research donation more likely if it could be easily integrated into their usual blood donation habits. Biomedical research was perceived as important but its social benefits were more abstract than a direct help to patients. CONCLUSIONS: Familiarity and reciprocity were key to the relationship between the blood service and blood donors. Donation for research introduces a new, more complex context to blood donation. Challenge to recognize concrete outcomes and benefits of donation may affect willingness to donate for research. Transparent communication of the role of the blood service in research and of the beneficiaries of the research is essential in maintaining trust. These results will help blood services in their planning to recruit blood donors for research projects.


Asunto(s)
Investigación Biomédica , Donantes de Sangre/psicología , Donantes de Sangre/estadística & datos numéricos , Adolescente , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Motivación , Encuestas y Cuestionarios , Adulto Joven
14.
Duodecim ; 133(8): 782-90, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29240345

RESUMEN

Individualized medicine, based on a detailed mapping of the patient's disease mechanisms, is becoming an essential part of treatment for an increasing number of diseases. In the past few years, the possibility to determine the abnormal genome and transcriptome of diseased cells at a reasonable cost has been the major advance. The vast amount of data accumulated from one patient will set requirements for data extraction tools, in order to have the essential information affecting the treatment of the patient information quickly and reliably at the disposal of attending physicians. A computerized decision support system connected to the information systems of the hospital is an integral part of individualized treatment. Although the application of genomic and other profiling information is challenging, individualization of medication provides great promises more effective and safer treatment.


Asunto(s)
Genómica , Medicina de Precisión , Técnicas de Apoyo para la Decisión , Pruebas Genéticas , Genoma Humano , Humanos , Medición de Riesgo , Transcriptoma
15.
Br J Haematol ; 174(2): 310-20, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27017954

RESUMEN

Fetal or neonatal alloimmune thrombocytopenia (FNAIT) is a potentially life-threatening disease where fetal platelets are destroyed by maternal anti-platelet IgG alloantibodies. The clinical outcome varies from asymptomatic, to petechiae or intracranial haemorrhage, but no marker has shown reliable correlation with severity, making screening for FNAIT impractical and highly inefficient. We recently found IgG Fc-glycosylation towards platelet and red blood cell antigens to be skewed towards decreased fucosylation, increased galactosylation and sialylation. The lowered core-fucosylation increases the affinity of the pathogenic antibodies to FcγRIIIa and FcγRIIIb, and hence platelet destruction. Here we analysed the N-linked glycans of human platelet antigen (HPA)-1a specific IgG1 with mass spectrometry in large series of FNAIT cases (n = 166) including longitudinal samples (n = 26). Besides a significant decrease in Fc-fucosylation after the first pregnancy (P = 0·0124), Fc-glycosylation levels remained stable during and after pregnancy and in subsequent pregnancies. Multiple logistic regression analysis identified anti-HPA-1a -fucosylation (P = 0·006) combined with galactosylation (P = 0·021) and antibody level (P = 0·038) correlated with bleeding severity, making these parameters a feasible marker in screening for severe cases of FNAIT.


Asunto(s)
Plaquetas/inmunología , Glicosilación , Inmunoglobulina G/análisis , Isoanticuerpos/química , Trombocitopenia Neonatal Aloinmune/inmunología , Anticuerpos Antiidiotipos/química , Antígenos de Plaqueta Humana/inmunología , Femenino , Fucosa/química , Galactosa/química , Hemorragia/inmunología , Humanos , Integrina beta3 , Isoanticuerpos/sangre , Espectrometría de Masas , Ácido N-Acetilneuramínico/química , Valor Predictivo de las Pruebas , Embarazo , Índice de Severidad de la Enfermedad
16.
Anal Bioanal Chem ; 406(12): 2757-69, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24633503

RESUMEN

Coeliac disease is a small intestinal disorder, induced by ingestion of gluten in genetically predisposed individuals. Coeliac disease has been strongly linked to human leukocyte antigens (HLA) located on chromosome 6, with almost 100 % of coeliac disease sufferers carrying either a HLA-DQ2 or HLA-DQ8 heterodimer, with the majority carrying HLA-DQ2 encoded by the DQA1*05:01/05:05, DQB1*02:01/02:02 alleles, whereas the remaining carry the HLA-DQ8 encoded by the DQA1*03:01, DQB1*03:02 alleles. In this work, we present the development of a multiplex electrochemical genosensor array of 36 electrodes, housed within a dedicated microfluidic platform and using a total of 10 sequence-specific probes for rapid medium-high resolution HLA-DQ2/DQ8 genotyping. An evaluation of the selectivity of the designed probes was carried out with the target sequences and 44 potentially interfering alleles, including single base mismatch differentiations; good selectivity was demonstrated. The performance of the electrochemical genosensor array was validated, analyzing real human samples for the presence of HLA-DQ2/DQ8 alleles, and compared with those obtained using laboratory-based HLA typing, and an excellent correlation was obtained.


Asunto(s)
Enfermedad Celíaca/diagnóstico , Enfermedad Celíaca/genética , Técnicas Electroquímicas/métodos , Antígenos HLA-DQ/genética , Análisis por Micromatrices/métodos , Alelos , Susceptibilidad a Enfermedades , Genotipo , Antígenos HLA-DQ/análisis , Humanos
17.
Eur J Hum Genet ; 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38212662

RESUMEN

Health questionnaires and donation criteria result in accumulation of highly selected individuals in a blood donor population. To understand better the usefulness of a blood donor-based biobank in personalised disease-associated genetic studies, and for possible personalised blood donation policies, we evaluated the occurrence and distributions of common and rare disease-associated genetic variants in Finnish Blood Service Biobank. We analysed among 31,880 blood donors the occurrence and geographical distribution of (i) 53 rare Finnish-enriched disease-associated variants, (ii) mutations assumed to influence blood donation: four Bernard-Soulier syndrome and two hemochromatosis mutations, (iii) type I diabetes risk genotype HLA-DQ2/DQ8. In addition, we analysed the level of consanguinity in Blood Service Biobank. 80.3% of blood donors carried at least one (range 0-9 per donor) of the rare variants, many in homozygous form, as well. Donors carrying multiple rare variants were enriched in Eastern Finland. Haemochromatosis mutation HFE C282Y homozygosity was 43.8% higher than expected, whereas mutations leading to Bernard-Soulier thrombocytopenia were rare. The frequency of HLA-DQ2/DQ8 genotype was slightly lower than expected. First-degree consanguinity was higher in Blood Service Biobank than in the general population. We demonstrate that despite donor selection, the Blood Service Biobank is a valuable resource for personalised medical research and for genotype-selected samples from unaffected individuals. The geographical genetic substructure of Finland enables efficient recruitment of donors carrying rare variants. Furthermore, we show that blood donor biobank material can be utilised for personalised blood donation policies.

18.
Hum Immunol ; 85(3): 110791, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38553383

RESUMEN

BACKGROUND: A genetic polymorphism, rs2204985, has been reported to be associated with the diversity of T-cell antigen receptor repertoire and TREC levels, reflecting the function of the thymus. As the thymus function can be assumed to be an important factor regulating the outcome of stem cell transplantation (SCT), it was of great interest that rs2204985 showed a genetic association to disease-free and overall survival in a German SCT donor cohort. Tools to predict the outcome of SCT more accurately would help in risk assessment and patient safety. OBJECTIVE: To evaluate the general validity of the original genetic association found in the German cohort, we determined genetic associations between rs2204985 and the outcome of SCT in 1,473 SCT donors from four different populations. STUDY DESIGN: Genetic associations between rs2204985 genotype AA versus AG/GG and overall survival (OS) and disease-free survival (DFS) in 1,473 adult, allogeneic SCT from Finland, the United Kingdom, Spain, and Poland were performed using the Kaplan-Meier analysis and log-rank tests. We adjusted the survival models with covariates using Cox regression. RESULTS: In unrelated SCT donors (N = 425), the OS of genotype AA versus AG/GG had a trend for a similar association (p = 0.049, log-rank test) as previously reported in the German cohort. The trend did not remain significant in the Cox regression analysis with covariates. No other associations were found. CONCLUSION: Weak support for the genetic association between rs2204985, previously also associated with thymus function, and the outcome of SCT could be found in a cohort from four populations.


Asunto(s)
Timo , Humanos , Adulto , Masculino , Femenino , Persona de Mediana Edad , Estudios de Cohortes , Polimorfismo de Nucleótido Simple , Genotipo , Donantes de Tejidos , Trasplante de Células Madre , Anciano , Adulto Joven , Adolescente , Polonia , Resultado del Tratamiento , España , Trasplante de Células Madre Hematopoyéticas , Reino Unido
19.
Res Sq ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39041034

RESUMEN

The high prevalence of autoimmune hypothyroidism (AIHT) - more than 5% in human populations - provides a unique opportunity to unlock the most complete picture to date of genetic loci that underlie systemic and organ-specific autoimmunity. Using a meta-analysis of 81,718 AIHT cases in FinnGen and the UK Biobank, we dissect associations along axes of thyroid dysfunction and autoimmunity. This largest-to-date scan of hypothyroidism identifies 418 independent associations (p < 5×10- 8), more than half of which have not previously been documented in thyroid disease. In 48 of these, a protein-coding variant is the lead SNP or is highly correlated (r2 > 0.95) with the lead SNP at the locus, including low-frequency coding variants at LAG3, ZAP70, TG, TNFSF11, IRF3, S1PR4, HABP2, ZNF429 as well as established variants at ADCY7, IFIH1 and TYK2. The variants at LAG3 (P67T), ZAP70 (T155M), and TG (Q655X) are highly enriched in Finland and functional experiments in T-cells demonstrate that the ZAP70:T155M allele reduces T-cell activation. By employing a large-scale scan of non-thyroid autoimmunity and a published meta-analysis of TSH levels, we use a Bayesian classifier to dissect the associated loci into distinct groupings and from this estimate, a significant proportion are involved in systemic (i.e., general to multiple autoimmune conditions) autoimmunity (34%) and another subset in thyroid-specific dysfunction (17%). By comparing these association results further to other common disease endpoints, we identify a noteworthy overlap with skin cancer, with 10% of AIHT loci showing a consistent but opposite pattern of association where alleles that increase the risk of hypothyroidism have protective effects for skin cancer. The association results, including genes encoding checkpoint inhibitors and other genes affecting protein levels of PD1, bolster the causal role of natural variation in autoimmunity influencing cancer outcomes.

20.
Oncoimmunology ; 13(1): 2407532, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39351443

RESUMEN

Immunotherapy has emerged as a promising approach for cancer treatment, with oncolytic adenoviruses showing power as immunotherapeutic agents. In this study, we investigated the immunotherapeutic potential of an adenovirus construct expressing CXCL9, CXCL10, or IL-15 in clear cell renal cell carcinoma (ccRCC) tumor models. Our results demonstrated robust cytokine secretion upon viral treatment, suggesting effective transgene expression. Subsequent analysis using resistance-based transwell migration and microfluidic chip assays demonstrated increased T-cell migration in response to chemokine secretion by infected cells in both 2D and 3D cell models. Flow cytometry analysis revealed CXCR3 receptor expression across T-cell subsets, with the highest percentage found on CD8+ T-cells, underscoring their key role in immune cell migration. Alongside T-cells, we also detected NK-cells in the tumors of immunocompromised mice treated with cytokine-encoding adenoviruses. Furthermore, we identified potential immunogenic antigens that may enhance the efficacy and specificity of our armed oncolytic adenoviruses in ccRCC. Overall, our findings using ccRCC cell line, in vivo humanized mice, physiologically relevant PDCs in 2D and patient-derived organoids (PDOs) in 3D suggest that chemokine-armed adenoviruses hold promise for enhancing T-cell migration and improving immunotherapy outcomes in ccRCC. Our study contributes to the development of more effective ccRCC treatment strategies by elucidating immune cell infiltration and activation mechanisms within the tumor microenvironment (TME) and highlights the usefulness of PDOs for predicting clinical relevance and validating novel immunotherapeutic approaches. Overall, our research offers insights into the rational design and optimization of viral-based immunotherapies for ccRCC.


Asunto(s)
Adenoviridae , Carcinoma de Células Renales , Neoplasias Renales , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/terapia , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/genética , Humanos , Animales , Neoplasias Renales/inmunología , Neoplasias Renales/terapia , Neoplasias Renales/patología , Neoplasias Renales/genética , Ratones , Adenoviridae/genética , Adenoviridae/inmunología , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Viroterapia Oncolítica/métodos , Inmunoterapia/métodos , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Quimiocina CXCL9/inmunología , Movimiento Celular , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Quimiocina CXCL10/inmunología , Citocinas/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Interleucina-15/genética , Interleucina-15/metabolismo , Interleucina-15/inmunología , Receptores CXCR3/metabolismo , Receptores CXCR3/genética , Virus Oncolíticos/genética , Virus Oncolíticos/inmunología , Linfocitos T CD8-positivos/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA