Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 23(14): 6458-6464, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37442114

RESUMEN

The conductivity and strength of carbon nanotube (CNT) wires currently rival those of existing engineering materials; fullerene-based materials have not progressed similarly, despite their exciting transport properties such as superconductivity. This communication reveals a new mechanically robust wire of mutually aligned fullerene supramolecules self-assembled between CNT bundles, where the fullerene supramolecular internal crystal structure and outer surface are aligned and dispersed with the CNT bundles. The crystallinity, crystal dimensions, and other structural features of the fullerene supramolecular network are impacted by a number of important production processes such as fullerene concentration and postprocess annealing. The crystal spacing of the CNTs and fullerenes is not altered, suggesting that they are not exerting significant internal pressure on each other. In low concentrations, the addition of networked fullerenes makes the CNT wire mechanically stronger. More importantly, novel mutually aligned and networked fullerene supramolecules are now in a bulk self-supporting architecture.

2.
Proc Biol Sci ; 290(1990): 20222244, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36629119

RESUMEN

How did rhythm originate in humans, and other species? One cross-cultural universal, frequently found in human music, is isochrony: when note onsets repeat regularly like the ticking of a clock. Another universal consists in synchrony (e.g. when individuals coordinate their notes so that they are sung at the same time). An approach to biomusicology focuses on similarities and differences across species, trying to build phylogenies of musical traits. Here we test for the presence of, and a link between, isochrony and synchrony in a non-human animal. We focus on the songs of one of the few singing primates, the lar gibbon (Hylobates lar), extracting temporal features from their solo songs and duets. We show that another ape exhibits one rhythmic feature at the core of human musicality: isochrony. We show that an enhanced call rate overall boosts isochrony, suggesting that respiratory physiological constraints play a role in determining the song's rhythmic structure. However, call rate alone cannot explain the flexible isochrony we witness. Isochrony is plastic and modulated depending on the context of emission: gibbons are more isochronous when duetting than singing solo. We present evidence for rhythmic interaction: we find statistical causality between one individual's note onsets and the co-singer's onsets, and a higher than chance degree of synchrony in the duets. Finally, we find a sex-specific trade-off between individual isochrony and synchrony. Gibbon's plasticity for isochrony and rhythmic overlap may suggest a potential shared selective pressure for interactive vocal displays in singing primates. This pressure may have convergently shaped human and gibbon musicality while acting on a common neural primate substrate. Beyond humans, singing primates are promising models to understand how music and, specifically, a sense of rhythm originated in the primate phylogeny.


Asunto(s)
Hominidae , Música , Masculino , Animales , Femenino , Humanos , Hylobates/fisiología , Vocalización Animal/fisiología , Primates
3.
Soft Matter ; 18(29): 5509-5517, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35848600

RESUMEN

Studying the Brownian motion of fibers and semi-flexible filaments in porous media is the key to understanding the transport and mechanical properties in a variety of systems. The motion of semi-flexible filaments in gel-like porous media including polymer networks and cell cytoskeleton has been studied theoretically and experimentally, whereas the motion of these materials in packed-colloid porous media, advanced foams, and rock-like systems has not been thoroughly studied. Here we use video microscopy to directly visualize the reptation and transport of intrinsically fluorescent, semiflexible, semiconducting single-walled carbon nanotubes (SWCNTs) in the sub-micron pores of packed colloids as fixed obstacles of packed-colloid porous media. By visualizing the filament motion and Brownian diffusion at different locations in the pore structures, we study how the properties of the environment, like the pore shape and pore structure of the porous media, affect SWCNT mobility. These results show that the porous media structure controls SWCNT reorientation during Brownian diffusion. In packed-colloid pores, SWCNTs diffuse along straight pores and bend across pores; conversely, in gel pores, SWCNTs consistently diffuse into curved pores, displaying a faster parallel motion. In both gel and packed-colloid porous media, SWCNT finite stiffness enhances SWCNT rotational diffusion and prevents jamming, allowing for inter-pore diffusion.


Asunto(s)
Nanotubos de Carbono , Coloides/química , Difusión , Movimiento (Física) , Nanotubos de Carbono/química , Porosidad
4.
Nano Lett ; 21(17): 7093-7099, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34459618

RESUMEN

Smart wearable electronic accessories (e.g., watches) have found wide adoption; conversely, progress in electronic textiles has been slow due to the difficulty of embedding rigid electronic materials into flexible fabrics. Electronic clothing requires fibers that are conductive, robust, biocompatible, and can be produced on a large scale. Here, we create sewable electrodes and signal transmission wires from neat carbon nanotube threads (CNTT). These threads are soft like standard sewing thread, but they have metal-level conductivity and low interfacial impedance with skin. Electrocardiograms (EKGs) obtained by CNTT electrodes were comparable (P > 0.05) to signals obtained with commercial electrodes. CNTT can also be used as transmission wires to carry signals to other parts of a garment. Finally, the textiles can be machine-washed and stretched repeatedly without signal degradation. These results demonstrate promise for textile sensors and electronic fabric with the feel of standard clothing that can be incorporated with traditional clothing manufacturing techniques.


Asunto(s)
Dispositivos Electrónicos Vestibles , Vestuario , Electrodos , Electrónica , Textiles
5.
Soft Matter ; 17(20): 5122-5130, 2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-33735362

RESUMEN

Carbon nanotubes (CNTs) are stiff, all-carbon macromolecules with diameters as small as one nanometer and few microns long. Solutions of CNTs in chlorosulfonic acid (CSA) follow the phase behavior of rigid rod polymers interacting via a repulsive potential and display a liquid crystalline phase at sufficiently high concentration. Here, we show that small-angle X-ray scattering and polarized light microscopy data can be combined to characterize quantitatively the morphology of liquid crystalline phases formed in CNT solutions at concentrations from 3 to 6.5% by volume. We find that upon increasing their concentration, CNTs self-assemble into a liquid crystalline phase with a pleated texture and with a large inter-particle spacing that could be indicative of a transition to higher-order liquid crystalline phases. We explain how thermal undulations of CNTs can enhance their electrostatic repulsion and increase their effective diameter by an order of magnitude. By calculating the critical concentration, where the mean amplitude of undulation of an unconstrained rod becomes comparable to the rod spacing, we find that thermal undulations start to affect steric forces at concentrations as low as the isotropic cloud point in CNT solutions.

6.
Nano Lett ; 20(5): 3178-3184, 2020 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-32353239

RESUMEN

Active fibers with electro-optic functionalities are promising building blocks for the emerging and rapidly growing field of fiber and textile electronics. Yet, there remains significant challenges that require improved understanding of the principles of active fiber assembly to enable the development of fiber-shaped devices characterized by having a small diameter, being lightweight, and having high mechanical strength. To this end, the current frameworks are insufficient, and new designs and fabrication approaches are essential to accommodate this unconventional form factor. Here, we present a first demonstration of a pathway that effectively integrates the foundational components meeting such requirements, with the use of a flexible and robust conductive core carbon nanotube fiber and an organic-inorganic emissive composite layer as the two critical elements. We introduce an active fiber design that can be realized through an all solution-processed approach. We have implemented this technique to demonstrate a three-layered light-emitting fiber with a coaxially coated design.

7.
Langmuir ; 36(1): 242-249, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31818099

RESUMEN

The unique carbon nanotube (CNT) properties are mainly determined by their geometry, e.g., their aspect ratio, diameter, and number of walls. So far, chlorosulfonic acid is the only practical true solvent for carbon nanotubes, forming thermodynamically stable molecular solutions. Above a critical concentration the system forms an ordered, nematic liquid-crystalline phase. That phase behavior is the basis for liquid-phase processing and the optimal translation of the carbon nanotube molecular properties to the macroscopic scale. The final material properties depend on the phase behavior of the "dope" from which it is prepared, which depends on the CNT parameters themselves. Earlier work determined that CNT aspect ratio controls the phase behavior, in accordance with classical rigid-rod theories. Here we use cryogenic transmission electron microscopy and Raman spectroscopy to understand the relation between the geometry of the CNTs, the chemical interaction with chlorosulfonic acid, and the phase behavior of crowded solutions. We show that the CNT diameter and number of walls also play an independent role in the phase transition and phase morphology of the system because of their effect on the CNT bending stiffness.

8.
Nano Lett ; 19(6): 3519-3526, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31084030

RESUMEN

A monofilament fiber spun from individual carbon nanotubes is an arbitrarily long ensemble of weakly interacting, aligned, discrete nanoparticles. Despite the structural resemblance of carbon nanotube monofilament fibers to crystalline polymeric fibers, very little is known about their dynamic collective mechanics, which arise from van der Waals interactions among the individual carbon nanotubes. Using ultrafast stroboscopic microscopy, we study the collective dynamics of carbon nanotube fibers and compare them directly with nylon, Kevlar, and aluminum monofilament fibers under the same supersonic impact conditions. The in situ dynamics and kinetic parameters of the fibers show that the kinetic energy absorption characteristics of the carbon nanotube fibers surpass all other fibers. This study provides insight into the strain-rate-dependent strengthening mechanics of an ensemble of nanomaterials for the development of high-performance fibers used in body armor and other protective nanomaterials possessing exceptional stability in various harsh environments.

9.
Nano Lett ; 19(1): 158-164, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30484322

RESUMEN

Ultrashort bunches of electrons, emitted from solid surfaces through excitation by ultrashort laser pulses, are an essential ingredient in advanced X-ray sources, and ultrafast electron diffraction and spectroscopy. Multiphoton photoemission using a noble metal as the photocathode material is typically used but more brightness is desired. Artificially structured metal photocathodes have been shown to enhance optical absorption via surface plasmon resonance but such an approach severely reduces the damage threshold in addition to requiring state-of-the-art facilities for photocathode fabrication. Here, we report ultrafast photoelectron emission from sidewalls of aligned single-wall carbon nanotubes. We utilized strong exciton resonances inherent in this prototypical one-dimensional material, and its excellent thermal conductivity and mechanical rigidity leading to a high damage threshold. We obtained unambiguous evidence for resonance-enhanced multiphoton photoemission processes with definite power-law behaviors. In addition, we observed strong polarization dependence and ultrashort photoelectron response time, both of which can be quantitatively explained by our model. These results firmly establish aligned single-wall carbon nanotube films as novel and promising ultrafast photocathode material.

11.
Nano Lett ; 18(3): 1615-1619, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29406733

RESUMEN

Due to recent advances in high-throughput synthesis, research on boron nitride nanotubes (BNNTs) is moving toward applications. One future goal is the assembly of macroscopic articles of high-aspect-ratio, pristine BNNTs. However, these articles are presently unattainable because of insufficient purification and fabrication methods. We introduce a solution process for extracting BNNTs from synthesis impurities without sonication or the use of surfactants and proceed to convert the extracted BNNTs into thin films. The solution process can also be used to convert as-synthesized material-which contains significant amounts of hexagonal boron nitride ( h-BN)-into mats and aerogels with controllable structure and dimension. The solution extraction method, combined with further advances in synthesis and purification, contributes to the development of all-BNNT macroscopic articles, such as fibers and 3-D structures.

12.
Nano Lett ; 18(1): 326-335, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29220192

RESUMEN

Soft and conductive nanomaterials like carbon nanotubes, graphene, and nanowire scaffolds have expanded the family of ultraflexible microelectrodes that can bend and flex with the natural movement of the brain, reduce the inflammatory response, and improve the stability of long-term neural recordings. However, current methods to implant these highly flexible electrodes rely on temporary stiffening agents that temporarily increase the electrode size and stiffness thus aggravating neural damage during implantation, which can lead to cell loss and glial activation that persists even after the stiffening agents are removed or dissolve. A method to deliver thin, ultraflexible electrodes deep into neural tissue without increasing the stiffness or size of the electrodes will enable minimally invasive electrical recordings from within the brain. Here we show that specially designed microfluidic devices can apply a tension force to ultraflexible electrodes that prevents buckling without increasing the thickness or stiffness of the electrode during implantation. Additionally, these "fluidic microdrives" allow us to precisely actuate the electrode position with micron-scale accuracy. To demonstrate the efficacy of our fluidic microdrives, we used them to actuate highly flexible carbon nanotube fiber (CNTf) microelectrodes for electrophysiology. We used this approach in three proof-of-concept experiments. First, we recorded compound action potentials in a soft model organism, the small cnidarian Hydra. Second, we targeted electrodes precisely to the thalamic reticular nucleus in brain slices and recorded spontaneous and optogenetically evoked extracellular action potentials. Finally, we inserted electrodes more than 4 mm deep into the brain of rats and detected spontaneous individual unit activity in both cortical and subcortical regions. Compared to syringe injection, fluidic microdrives do not penetrate the brain and prevent changes in intracranial pressure by diverting fluid away from the implantation site during insertion and actuation. Overall, the fluidic microdrive technology provides a robust new method to implant and actuate ultraflexible neural electrodes.


Asunto(s)
Dispositivos Laboratorio en un Chip , Nanotubos de Carbono/química , Neuronas/fisiología , Potenciales de Acción , Animales , Encéfalo/fisiología , Elasticidad , Diseño de Equipo , Hydra/fisiología , Microelectrodos , Ratas
13.
Soft Matter ; 14(41): 8284-8292, 2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30175834

RESUMEN

Carbon nanotube (CNT) fibers are a promising material for wearable electronics and biomedical applications due to their combined flexibility and electrical conductivity. To engineer the bending properties for such applications requires understanding how the bending stiffness of CNT fibers scales with CNT length and fiber diameter. We measure bending stiffness with a cantilever setup interpreted within Euler Elastica theory. We find that the bending stiffness scales with a power law of 1.9 for the fiber diameter and 1.6 for the CNT length. The diameter scaling exponent for fiber diameter agrees with results from earlier experiments and theory for microscopic CNT bundles. We develop a simple model which predicts the experimentally observed scaling exponents within statistical significance.

14.
Langmuir ; 33(36): 9115-9121, 2017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28782959

RESUMEN

Line tension, i.e., the force on a three-phase contact line, has been a subject of extensive research due to its impact on technological applications including nanolithography and nanofluidics. However, there is no consensus on the sign and magnitude of the line tension, mainly because it only affects the shape of small droplets, below the length scale dictated by the ratio of line tension to surface tension σ/τ. This ratio is related to the size of constitutive molecules in the system, which translates to a nanometer for conventional fluids. Here, we show that this ratio is orders of magnitude larger in lyotropic liquid crystal systems comprising micrometer-long colloidal particles. Such systems are known to form spindle-shaped elongated liquid crystal droplets in coexistence with the isotropic phase, with the droplets flattening when in contact with flat solid surfaces. We propose a method to characterize the line tension by fitting measured droplet shape to a macroscopic theoretical model that incorporates interfacial forces and elastic deformation of the nematic phase. By applying this method to hundreds of droplets of carbon nanotubes dissolved in chlorosulfonic acid, we find that σ/τ ∼ -0.84 ± 0.06 µm. This ratio is 2 orders of magnitude larger than what has been reported for conventional fluids, in agreement with theoretical scaling arguments.

15.
Langmuir ; 33(16): 4011-4018, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28376617

RESUMEN

Using direct-imaging cryogenic transmission and scanning electron microscopy, we show different stages of liquid-crystalline phase development in progressively more concentrated solutions of carbon nanotubes in chlorosulfonic acid: a dilute phase of individually dissolved carbon nanotubes; semidilute and concentrated isotropic phases; coexisting concentrated isotropic and nematic phases in local equilibrium with each other; and a fully liquid-crystalline phase. Nanometric resolution of cryogenic electron microscopy reveals carbon nanotube self-assembly into liquid-crystalline domains of several nanometers in width at very early stages. We find significant differences in carbon nanotube liquid-crystalline domain morphology as a function of the carbon nanotube aspect ratio, diameter, and degree of purity.

16.
Langmuir ; 33(50): 14340-14346, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29166030

RESUMEN

Boron nitride nanotubes (BNNTs) are of interest for their unique combination of high tensile strength, high electrical resistivity, high neutron cross section, and low reactivity. The fastest route to employing these properties in composites and macroscopic articles is through solution processing. However, dispersing BNNTs without functionalization or use of a surfactant is challenging. We show here by cryogenic transmission electron microscopy that BNNTs spontaneously dissolve in chlorosulfonic acid as disentangled individual molecules. Electron energy loss spectroscopy of BNNTs dried from the solution confirms preservation of the sp2 hybridization for boron and nitrogen, eliminating the possibility of BNNT functionalization or damage. The length and diameter of the BNNTs was statistically calculated to be ∼4.5 µm and ∼4 nm, respectively. Interestingly, bent or otherwise damaged BNNTs are filled by chlorosulfonic acid. Additionally, nanometer-sized synthesis byproducts, including boron nitride clusters, isolated single and multilayer hexagonal boron nitride, and boron particles, were identified. Dissolution in superacid provides a route for solution processing BNNTs without altering their chemical structure.

17.
Nanotechnology ; 27(16): 165402, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-26953864

RESUMEN

Graphene oxide (GO) sheets can form liquid crystals (LCs) in their aqueous dispersions that are more viscous with a stronger LC feature. In this work we combine the viscous LC-GO solution with the blade-coating technique to make GO films, for constructing graphene-based supercapacitors in a scalable way. Reduced GO (rGO) films are prepared by wet chemical methods, using either hydrazine (HZ) or hydroiodic acid (HI). Solid-state supercapacitors with rGO films as electrodes and highly conductive carbon nanotube films as current collectors are fabricated and the capacitive properties of different rGO films are compared. It is found that the HZ-rGO film is superior to the HI-rGO film in achieving high capacitance, owing to the 3D structure of graphene sheets in the electrode. Compared to gelled electrolyte, the use of liquid electrolyte (H2SO4) can further increase the capacitance to 265 F per gram (corresponding to 52 mF per cm(2)) of the HZ-rGO film.

18.
Langmuir ; 31(21): 5928-34, 2015 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-25961667

RESUMEN

Transparent conductive films are made from aqueous surfactant stabilized dispersions of carbon nanotubes using an up-scalable rod coating method. The processability of the films is governed by the amount of surfactant which is shown to alter strongly the wetting and viscosity of the ink. The increase of viscosity results from surfactant mediated attractive interactions between the carbon nanotubes. Links between the formulation, ink rheological properties, and electro-optical properties of the films are determined. The provided guidelines are generalized and used to fabricate optimized electrodes using conductive polymers and carbon nanotubes. In these electrodes, the carbon nanotubes act as highly efficient viscosifiers that allow the optimized ink to be homogeneously spread using the rod coating method. From a general point of view and in contrast to previous studies, the CNTs are optimally used in the present approach as conductive additives for viscosity enhancements of electronic inks.

19.
J Chem Phys ; 142(4): 044705, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25638001

RESUMEN

Selectivity is one of the most fundamental concepts in natural sciences, and it is also critically important in various technological, industrial, and medical applications. Although there are many experimental methods that allow to separate molecules, frequently they are expensive and not efficient. Recently, a new method of separation of chemical mixtures based on utilization of channels and nanopores has been proposed and successfully tested in several systems. However, mechanisms of selectivity in the molecular transport during the translocation are still not well understood. Here, we develop a simple theoretical approach to explain the origin of selectivity in molecular fluxes through channels. Our method utilizes discrete-state stochastic models that take into account all relevant chemical transitions and can be solved analytically. More specifically, we analyze channels with one and two binding sites employed for separating mixtures of two types of molecules. The effects of the symmetry and the strength of the molecular-pore interactions are examined. It is found that for one-site binding channels, the differences in the strength of interactions for two species drive the separation. At the same time, in more realistic two-site systems, the symmetry of interaction potential becomes also important. The most efficient separation is predicted when the specific binding site is located near the entrance to the nanopore. In addition, the selectivity is higher for large entrance rates into the channel. It is also found that the molecular transport is more selective for repulsive interactions than for attractive interactions. The physical-chemical origin of the observed phenomena is discussed.


Asunto(s)
Modelos Teóricos , Nanoporos , Sitios de Unión , Movimiento (Física)
20.
Proc Natl Acad Sci U S A ; 109(29): 11599-604, 2012 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-22752305

RESUMEN

Dispersion of carbon nanotubes (CNTs) into liquids typically requires ultrasonication to exfoliate individuals CNTs from bundles. Experiments show that CNT length drops with sonication time (or energy) as a power law t(-m). Yet the breakage mechanism is not well understood, and the experimentally reported power law exponent m ranges from approximately 0.2 to 0.5. Here we simulate the motion of CNTs around cavitating bubbles by coupling brownian dynamics with the Rayleigh-Plesset equation. We observe that, during bubble growth, CNTs align tangentially to the bubble surface. Surprisingly, we find two dynamical regimes during the collapse: shorter CNTs align radially, longer ones buckle. We compute the phase diagram for CNT collapse dynamics as a function of CNT length, stiffness, and initial distance from the bubble nuclei and determine the transition from aligning to buckling. We conclude that, depending on their length, CNTs can break due to either buckling or stretching. These two mechanisms yield different power laws for the length decay (0.25 and 0.5, respectively), reconciling the apparent discrepancy in the experimental data.


Asunto(s)
Modelos Químicos , Nanotubos de Carbono/química , Ultrasonido/métodos , Simulación de Dinámica Molecular , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA