Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 115(35): E8172-E8180, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30104359

RESUMEN

Despite not spanning phospholipid bilayers, monotopic integral proteins (MIPs) play critical roles in organizing biochemical reactions on membrane surfaces. Defining the structural basis by which these proteins are anchored to membranes has been hampered by the paucity of unambiguously identified MIPs and a lack of computational tools that accurately distinguish monolayer-integrating motifs from bilayer-spanning transmembrane domains (TMDs). We used quantitative proteomics and statistical modeling to identify 87 high-confidence candidate MIPs in lipid droplets, including 21 proteins with predicted TMDs that cannot be accommodated in these monolayer-enveloped organelles. Systematic cysteine-scanning mutagenesis showed the predicted TMD of one candidate MIP, DHRS3, to be a partially buried amphipathic α-helix in both lipid droplet monolayers and the cytoplasmic leaflet of endoplasmic reticulum membrane bilayers. Coarse-grained molecular dynamics simulations support these observations, suggesting that this helix is most stable at the solvent-membrane interface. The simulations also predicted similar interfacial amphipathic helices when applied to seven additional MIPs from our dataset. Our findings suggest that interfacial helices may be a common motif by which MIPs are integrated into membranes, and provide high-throughput methods to identify and study MIPs.


Asunto(s)
Proteínas de la Membrana/química , Proteómica , Células HEK293 , Humanos , Gotas Lipídicas , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutagénesis , Dominios Proteicos , Estructura Secundaria de Proteína
2.
Mol Biol Cell ; 29(9): 1021-1030, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29514927

RESUMEN

Endoplasmic reticulum (ER)-associated degradation (ERAD) mediates the proteasomal clearance of proteins from the early secretory pathway. In this process, ubiquitinated substrates are extracted from membrane-embedded dislocation complexes by the AAA ATPase VCP and targeted to the cytosolic 26S proteasome. In addition to its well-established role in the degradation of misfolded proteins, ERAD also regulates the abundance of key proteins such as enzymes involved in cholesterol synthesis. However, due to the lack of generalizable methods, our understanding of the scope of proteins targeted by ERAD remains limited. To overcome this obstacle, we developed a VCP inhibitor substrate trapping approach (VISTA) to identify endogenous ERAD substrates. VISTA exploits the small-molecule VCP inhibitor CB5083 to trap ERAD substrates in a membrane-associated, ubiquitinated form. This strategy, coupled with quantitative ubiquitin proteomics, identified previously validated (e.g., ApoB100, Insig2, and DHCR7) and novel (e.g., SCD1 and RNF5) ERAD substrates in cultured human hepatocellular carcinoma cells. Moreover, our results indicate that RNF5 autoubiquitination on multiple lysine residues targets it for ubiquitin and VCP--dependent clearance. Thus, VISTA provides a generalizable discovery method that expands the available toolbox of strategies to elucidate the ERAD substrate landscape.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico/fisiología , Proteómica/métodos , Adenosina Trifosfatasas/metabolismo , Carcinoma Hepatocelular/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Proteína que Contiene Valosina/antagonistas & inhibidores , Proteína que Contiene Valosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA