Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nature ; 573(7775): 590-594, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31511697

RESUMEN

The cellular stress response has a vital role in regulating homeostasis by modulating cell survival and death. Stress granules are cytoplasmic compartments that enable cells to survive various stressors. Defects in the assembly and disassembly of stress granules are linked to neurodegenerative diseases, aberrant antiviral responses and cancer1-5. Inflammasomes are multi-protein heteromeric complexes that sense molecular patterns that are associated with damage or intracellular pathogens, and assemble into cytosolic compartments known as ASC specks to facilitate the activation of caspase-1. Activation of inflammasomes induces the secretion of interleukin (IL)-1ß and IL-18 and drives cell fate towards pyroptosis-a form of programmed inflammatory cell death that has major roles in health and disease6-12. Although both stress granules and inflammasomes can be triggered by the sensing of cellular stress, they drive contrasting cell-fate decisions. The crosstalk between stress granules and inflammasomes and how this informs cell fate has not been well-studied. Here we show that the induction of stress granules specifically inhibits NLRP3 inflammasome activation, ASC speck formation and pyroptosis. The stress granule protein DDX3X interacts with NLRP3 to drive inflammasome activation. Assembly of stress granules leads to the sequestration of DDX3X, and thereby the inhibition of NLRP3 inflammasome activation. Stress granules and the NLRP3 inflammasome compete for DDX3X molecules to coordinate the activation of innate responses and subsequent cell-fate decisions under stress conditions. Induction of stress granules or loss of DDX3X in the myeloid compartment leads to a decrease in the production of inflammasome-dependent cytokines in vivo. Our findings suggest that macrophages use the availability of DDX3X to interpret stress signals and choose between pro-survival stress granules and pyroptotic ASC specks. Together, our data demonstrate the role of DDX3X in driving NLRP3 inflammasome and stress granule assembly, and suggest a rheostat-like mechanistic paradigm for regulating live-or-die cell-fate decisions under stress conditions.


Asunto(s)
Muerte Celular/genética , ARN Helicasas DEAD-box/metabolismo , Inflamasomas/genética , Macrófagos/citología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Estrés Fisiológico/genética , Animales , Línea Celular , Supervivencia Celular/genética , ARN Helicasas DEAD-box/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Células HEK293 , Humanos , Inflamasomas/inmunología , Macrófagos/inmunología , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/genética
2.
Dev Cell ; 54(4): 455-470.e5, 2020 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-32553121

RESUMEN

DEAD-Box Helicase 3 X-Linked (DDX3X) is frequently mutated in the Wingless (WNT) and Sonic hedghog (SHH) subtypes of medulloblastoma-the commonest malignant childhood brain tumor, but whether DDX3X functions as a medulloblastoma oncogene or tumor suppressor gene is not known. Here, we show that Ddx3x regulates hindbrain patterning and development by controlling Hox gene expression and cell stress signaling. In mice predisposed to Wnt- or Shh medulloblastoma, Ddx3x sensed oncogenic stress and suppressed tumor formation. WNT and SHH medulloblastomas normally arise only in the lower and upper rhombic lips, respectively. Deletion of Ddx3x removed this lineage restriction, enabling both medulloblastoma subtypes to arise in either germinal zone. Thus, DDX3X is a medulloblastoma tumor suppressor that regulates hindbrain development and restricts the competence of cell lineages to form medulloblastoma subtypes.


Asunto(s)
Neoplasias Encefálicas/genética , ARN Helicasas DEAD-box/genética , Proteínas Hedgehog/genética , Meduloblastoma/genética , Animales , Neoplasias Encefálicas/patología , Linaje de la Célula/genética , Regulación Neoplásica de la Expresión Génica/genética , Genes Homeobox , Humanos , Meduloblastoma/patología , Ratones , Mutación/genética , Rombencéfalo/metabolismo , Rombencéfalo/patología , Proteínas Wnt/genética
4.
Cancer Cell ; 29(4): 508-522, 2016 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-27050100

RESUMEN

The childhood brain tumor, medulloblastoma, includes four subtypes with very different prognoses. Here, we show that paracrine signals driven by mutant ß-catenin in WNT-medulloblastoma, an essentially curable form of the disease, induce an aberrant fenestrated vasculature that permits the accumulation of high levels of intra-tumoral chemotherapy and a robust therapeutic response. In contrast, SHH-medulloblastoma, a less curable disease subtype, contains an intact blood brain barrier, rendering this tumor impermeable and resistant to chemotherapy. The medulloblastoma-endothelial cell paracrine axis can be manipulated in vivo, altering chemotherapy permeability and clinical response. Thus, medulloblastoma genotype dictates tumor vessel phenotype, explaining in part the disparate prognoses among medulloblastoma subtypes and suggesting an approach to enhance the chemoresponsiveness of other brain tumors.


Asunto(s)
Barrera Hematoencefálica , Neoplasias Cerebelosas/genética , Meduloblastoma/genética , Animales , Antineoplásicos/farmacocinética , Proteínas Portadoras/fisiología , Neoplasias Cerebelosas/irrigación sanguínea , Neoplasias Cerebelosas/clasificación , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/metabolismo , Medios de Cultivo Condicionados/farmacología , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/fisiología , Endotelio Vascular/metabolismo , Endotelio Vascular/ultraestructura , Estudios de Asociación Genética , Vectores Genéticos/uso terapéutico , Genotipo , Transportador de Glucosa de Tipo 1/fisiología , Humanos , Meduloblastoma/irrigación sanguínea , Meduloblastoma/clasificación , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/metabolismo , Proteínas de la Membrana/fisiología , Ratones , Ratones Transgénicos , Proteínas de Neoplasias/fisiología , Comunicación Paracrina/efectos de los fármacos , Pericitos/patología , Proteínas Recombinantes de Fusión/metabolismo , Uniones Estrechas/ultraestructura , Transducción Genética , Vincristina/farmacocinética , Vincristina/uso terapéutico , Proteínas Wnt/genética , Proteínas Wnt/fisiología , Vía de Señalización Wnt/efectos de los fármacos
5.
Sci Rep ; 6: 25996, 2016 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-27180681

RESUMEN

DDX3X is a DEAD-box RNA helicase that has been implicated in multiple aspects of RNA metabolism including translation initiation and the assembly of stress granules (SGs). Recent genomic studies have reported recurrent DDX3X mutations in numerous tumors including medulloblastoma (MB), but the physiological impact of these mutations is poorly understood. Here we show that a consistent feature of MB-associated mutations is SG hyper-assembly and concomitant translation impairment. We used CLIP-seq to obtain a comprehensive assessment of DDX3X binding targets and ribosome profiling for high-resolution assessment of global translation. Surprisingly, mutant DDX3X expression caused broad inhibition of translation that impacted DDX3X targeted and non-targeted mRNAs alike. Assessment of translation efficiency with single-cell resolution revealed that SG hyper-assembly correlated precisely with impaired global translation. SG hyper-assembly and translation impairment driven by mutant DDX3X were rescued by a genetic approach that limited SG assembly and by deletion of the N-terminal low complexity domain within DDX3X. Thus, in addition to a primary defect at the level of translation initiation caused by DDX3X mutation, SG assembly itself contributes to global translation inhibition. This work provides mechanistic insights into the consequences of cancer-related DDX3X mutations, suggesting that globally reduced translation may provide a context-dependent survival advantage that must be considered as a possible contributor to tumorigenesis.


Asunto(s)
Neoplasias Cerebelosas/genética , Gránulos Citoplasmáticos/metabolismo , ARN Helicasas DEAD-box/genética , Meduloblastoma/genética , Mutación/genética , Carcinogénesis , Células HEK293 , Células HeLa , Humanos , Meduloblastoma/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Análisis de la Célula Individual
6.
Cell Rep ; 14(8): 1979-90, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26904939

RESUMEN

To identify genes and signaling pathways that initiate Neurofibromatosis type 1 (NF1) neurofibromas, we used unbiased insertional mutagenesis screening, mouse models, and molecular analyses. We mapped an Nf1-Stat3-Arid1b/ß-catenin pathway that becomes active in the context of Nf1 loss. Genetic deletion of Stat3 in Schwann cell progenitors (SCPs) and Schwann cells (SCs) prevents neurofibroma formation, decreasing SCP self-renewal and ß-catenin activity. ß-catenin expression rescues effects of Stat3 loss in SCPs. Importantly, P-STAT3 and ß-catenin expression correlate in human neurofibromas. Mechanistically, P-Stat3 represses Gsk3ß and the SWI/SNF gene Arid1b to increase ß-catenin. Knockdown of Arid1b or Gsk3ß in Stat3(fl/fl);Nf1(fl/fl);DhhCre SCPs rescues neurofibroma formation after in vivo transplantation. Stat3 represses Arid1b through histone modification in a Brg1-dependent manner, indicating that epigenetic modification plays a role in early tumorigenesis. Our data map a neural tumorigenesis pathway and support testing JAK/STAT and Wnt/ß-catenin pathway inhibitors in neurofibroma therapeutic trials.


Asunto(s)
Carcinogénesis/genética , Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica , Acetiltransferasa A N-Terminal/genética , Neurofibromatosis 1/genética , Neoplasias del Sistema Nervioso Periférico/genética , Factor de Transcripción STAT3/genética , beta Catenina/genética , Animales , Carcinogénesis/metabolismo , Carcinogénesis/patología , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Femenino , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Ratones , Ratones Desnudos , Mutagénesis Insercional , Acetiltransferasa A N-Terminal/antagonistas & inhibidores , Acetiltransferasa A N-Terminal/metabolismo , Trasplante de Neoplasias , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Neurofibromatosis 1/metabolismo , Neurofibromatosis 1/patología , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neoplasias del Sistema Nervioso Periférico/metabolismo , Neoplasias del Sistema Nervioso Periférico/patología , Fosforilación , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/metabolismo , Células de Schwann/metabolismo , Células de Schwann/patología , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , beta Catenina/metabolismo
7.
Cancer Res ; 72(20): 5317-27, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22918885

RESUMEN

Ras superfamily proteins participate in TGF-ß-mediated developmental pathways that promote either tumor suppression or progression. However, the specific Ras proteins, which integrate in vivo with TGF-ß signaling pathways, are unknown. As a general approach to this question, we activated all Ras proteins in vivo by genetic deletion of the RasGAP protein Nf1 and examined mice doubly deficient in a Ras protein to determine its requirement in formation of TGF-ß-dependent neurofibromas that arise in Nf1-deficient mice. Animals lacking Nf1 and the Ras-related protein R-Ras2/TC21 displayed a delay in formation of neurofibromas but an acceleration in formation of brain tumors and sarcomas. Loss of R-Ras2 was associated with elevated expression of TGF-ß in Nf1-deficient Schwann cell precursors, blockade of a Nf1/TGFßRII/AKT-dependent autocrine survival loop in tumor precursor cells, and decreased precursor cell numbers. Furthermore, the increase in size of sarcomas from xenografts doubly deficient in these genes was also found to be TGF-ß-dependent, in this case resulting from cell nonautonomous effects on endothelial cells and myofibroblasts. Extending these findings in clinical specimens, we documented an increase in TGF-ß ligands and an absence of TGF-ß receptor II in malignant peripheral nerve sheath tumors, which correspond to tumors in the Nf1-deficient mouse model. Together, our findings reveal R-Ras2 as a critical regulator of TGF-ß signaling in vivo.


Asunto(s)
Neurofibromina 1/genética , Factor de Crecimiento Transformador beta/fisiología , Proteínas ras/fisiología , Animales , Western Blotting , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA