Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 107(2): 278-292, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32707085

RESUMEN

Dominantly inherited disorders are not typically considered to be therapeutic candidates for gene augmentation. Here, we utilized induced pluripotent stem cell-derived retinal pigment epithelium (iPSC-RPE) to test the potential of gene augmentation to treat Best disease, a dominant macular dystrophy caused by over 200 missense mutations in BEST1. Gene augmentation in iPSC-RPE fully restored BEST1 calcium-activated chloride channel activity and improved rhodopsin degradation in an iPSC-RPE model of recessive bestrophinopathy as well as in two models of dominant Best disease caused by different mutations in regions encoding ion-binding domains. A third dominant Best disease iPSC-RPE model did not respond to gene augmentation, but showed normalization of BEST1 channel activity following CRISPR-Cas9 editing of the mutant allele. We then subjected all three dominant Best disease iPSC-RPE models to gene editing, which produced premature stop codons specifically within the mutant BEST1 alleles. Single-cell profiling demonstrated no adverse perturbation of retinal pigment epithelium (RPE) transcriptional programs in any model, although off-target analysis detected a silent genomic alteration in one model. These results suggest that gene augmentation is a viable first-line approach for some individuals with dominant Best disease and that non-responders are candidates for alternate approaches such as gene editing. However, testing gene editing strategies for on-target efficiency and off-target events using personalized iPSC-RPE model systems is warranted. In summary, personalized iPSC-RPE models can be used to select among a growing list of gene therapy options to maximize safety and efficacy while minimizing time and cost. Similar scenarios likely exist for other genotypically diverse channelopathies, expanding the therapeutic landscape for affected individuals.


Asunto(s)
Células Madre Pluripotentes Inducidas/fisiología , Degeneración Macular/genética , Mutación/genética , Alelos , Bestrofinas/genética , Calcio/metabolismo , Línea Celular , Canalopatías/genética , Proteínas del Ojo/genética , Edición Génica/métodos , Terapia Genética/métodos , Genotipo , Células HEK293 , Humanos , Epitelio Pigmentado de la Retina/fisiología
2.
Am J Physiol Cell Physiol ; 323(3): C772-C782, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35912989

RESUMEN

Channel proteins are vital for conducting ions throughout the body and are especially relevant to retina physiology. Inward rectifier potassium (Kir) channels are a class of K+ channels responsible for maintaining membrane potential and extracellular K+ concentrations. Studies of the KCNJ gene (that encodes Kir protein) expression identified the presence of all of the subclasses (Kir 1-7) of Kir channels in the retina or retinal-pigmented epithelium (RPE). However, functional studies have established the involvement of the Kir4.1 homotetramer and Kir4.1/5.1 heterotetramer in Müller glial cells, Kir2.1 in bipolar cells, and Kir7.1 in the RPE cell physiology. Here, we propose the potential roles of Kir channels in the retina based on the physiological contributions to the brain, pancreatic, and cardiac tissue functions. There are several open questions regarding the expressed KCNJ genes in the retina and RPE. For example, why does not the Kir channel subtype gene expression correspond with protein expression? Catching up with multiomics or functional "omics" approaches might shed light on posttranscriptional changes that might influence Kir subunit mRNA translation within the retina that guides our vision.


Asunto(s)
Canales de Potasio de Rectificación Interna , Potasio , Iones/metabolismo , Potasio/metabolismo , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , ARN Mensajero/metabolismo , Retina/metabolismo
3.
Am J Physiol Cell Physiol ; 323(1): C56-C68, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35584325

RESUMEN

Inward-rectifier potassium channel 7.1 (Kir7.1) is present in the polarized epithelium, including the retinal pigmented epithelium. A single amino acid change at position 153 in the KCNJ13 gene, a substitution of threonine to isoleucine in the Kir7.1 protein, causes blindness. We hypothesized that the disease caused by this single amino acid substitution within the transmembrane protein domain could alter the translation, localization, or ion transport properties. We assessed the effects of amino acid side-chain length, arrangement, and polarity on channel structure and function. We showed that the T153I mutation yielded a full-length protein localized to the cell membrane. Whole cell patch-clamp recordings and chord conductance analyses revealed that the T153I mutant channel had negligible K+ conductance and failed to hyperpolarize the membrane potential. However, the mutant channel exhibited enhanced inward current when rubidium was used as a charge carrier, suggesting that an inner pore had formed and the channel was dysfunctional. Substituting with a polar, nonpolar, or short side-chain amino acid did not affect the localization of the protein. Still, it had an altered channel function due to differences in pore radius. Polar side chains (cysteine and serine) with inner pore radii comparable to wildtype exhibited normal inward K+ conductance. Short side chains (glycine and alanine) produced a channel with wider than expected inner pore size and lacked the biophysical characteristics of the wild-type channel. Leucine substitution produced results similar to the T153I mutant channel. This study provides direct electrophysiological evidence for the structure and function of the Kir7.1 channel's narrow inner pore in regulating conductance.


Asunto(s)
Canales de Potasio de Rectificación Interna , Aminoácidos/metabolismo , Membrana Celular/metabolismo , Potenciales de la Membrana/genética , Técnicas de Placa-Clamp , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo
4.
Am J Hum Genet ; 104(2): 310-318, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30686507

RESUMEN

Pathogenic variants of the KCNJ13 gene are known to cause Leber congenital amaurosis (LCA16), an inherited pediatric blindness. KCNJ13 encodes the Kir7.1 subunit that acts as a tetrameric, inwardly rectifying potassium ion channel in the retinal pigment epithelium (RPE) to maintain ionic homeostasis and allow photoreceptors to encode visual information. We sought to determine whether genetic approaches might be effective in treating blindness arising from pathogenic variants in KCNJ13. We derived human induced pluripotent stem cell (hiPSC)-RPE cells from an individual carrying a homozygous c.158G>A (p.Trp53∗) pathogenic variant of KCNJ13. We performed biochemical and electrophysiology assays to confirm Kir7.1 function. We tested both small-molecule readthrough drug and gene-therapy approaches for this "disease-in-a-dish" approach. We found that the LCA16 hiPSC-RPE cells had normal morphology but did not express a functional Kir7.1 channel and were unable to demonstrate normal physiology. After readthrough drug treatment, the LCA16 hiPSC cells were hyperpolarized by 30 mV, and the Kir7.1 current was restored. Similarly, we rescued Kir7.1 channel function after lentiviral gene delivery to the hiPSC-RPE cells. In both approaches, Kir7.1 was expressed normally, and there was restoration of membrane potential and the Kir7.1 current. Loss-of-function variants of Kir7.1 are one cause of LCA. Using either readthrough therapy or gene augmentation, we rescued Kir7.1 channel function in iPSC-RPE cells derived from an affected individual. This supports the development of precision-medicine approaches for the treatment of clinical LCA16.


Asunto(s)
Ceguera/congénito , Canalopatías/genética , Terapia Genética/métodos , Células Madre Pluripotentes Inducidas/citología , Amaurosis Congénita de Leber/genética , Modelos Biológicos , Canales de Potasio de Rectificación Interna/genética , Epitelio Pigmentado de la Retina/patología , Secuencia de Bases , Ceguera/genética , Ceguera/patología , Canalopatías/patología , Niño , Humanos , Amaurosis Congénita de Leber/patología , Epitelio Pigmentado de la Retina/metabolismo
5.
Stem Cells ; 36(3): 313-324, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29230913

RESUMEN

Cell type-specific investigations commonly use gene reporters or single-cell analytical techniques. However, reporter line development is arduous and generally limited to a single gene of interest, while single-cell RNA (scRNA)-sequencing (seq) frequently yields equivocal results that preclude definitive cell identification. To examine gene expression profiles of multiple retinal cell types derived from human pluripotent stem cells (hPSCs), we performed scRNA-seq on optic vesicle (OV)-like structures cultured under cGMP-compatible conditions. However, efforts to apply traditional scRNA-seq analytical methods based on unbiased algorithms were unrevealing. Therefore, we developed a simple, versatile, and universally applicable approach that generates gene expression data akin to those obtained from reporter lines. This method ranks single cells by expression level of a bait gene and searches the transcriptome for genes whose cell-to-cell rank order expression most closely matches that of the bait. Moreover, multiple bait genes can be combined to refine datasets. Using this approach, we provide further evidence for the authenticity of hPSC-derived retinal cell types. Stem Cells 2018;36:313-324.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Retina/citología , Análisis de la Célula Individual/métodos , Perfilación de la Expresión Génica , Humanos , Análisis de Secuencia de ARN/métodos
6.
Exp Eye Res ; 188: 107798, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31520600

RESUMEN

Abnormal migration and proliferation of endothelial cells (EC) drive neovascular retinopathies. While anti-VEGF treatment slows progression, pathology is often supported by decrease in intraocular pigment epithelium-derived factor (PEDF), an endogenous inhibitor of angiogenesis. A surface helical 34-mer peptide of PEDF, comprising this activity, is efficacious in animal models of neovascular retina disease but remains impractically large for therapeutic use. We sought smaller fragments within this sequence that mitigate choroidal neovascularization (CNV). Expecting rapid intravitreal (IVT) clearance, we also developed a method to reversibly attach peptides to nano-carriers for extended delivery. Synthetic fragments of 34-mer yielded smaller anti-angiogenic peptides, and N-terminal capping with dicarboxylic acids did not diminish activity. Charge restoration via substitution of an internal aspartate by asparagine improved potency, achieving low nM apoptotic response in VEGF-activated EC. Two optimized peptides (PEDF 335, 8-mer and PEDF 336, 9-mer) were tested in a mouse model of laser-induced CNV. IVT injection of either peptide, 2-5 days before laser treatment, gave significant CNV decrease at day +14 post laser treatment. The 8-mer also decreased CNV, when administered as eye drops. Also examined was a nanoparticle-conjugate (NPC) prodrug of the 9-mer, having positive zeta potential, expected to display longer intraocular residence. This NPC showed extended efficacy, even when injected 14 days before laser treatment. Neither inflammatory cells nor other histopathologic abnormalities were seen in rabbit eyes harvested 14 days following IVT injection of PEDF 336 (>200 µg). No rabbit or mouse eye irritation was observed over 12-17 days of PEDF 335 eye drops (10 mM). Viability was unaffected in 3 retinal and 2 choroidal cell types by PEDF 335 up to 100 µM, PEDF 336 (100 µM) gave slight growth inhibition only in choroidal EC. A small anti-angiogenic PEDF epitope (G-Y-D-L-Y-R-V) was identified, variants (adipic-Sar-Y-N-L-Y-R-V) mitigate CNV, with clinical potential in treating neovascular retinopathy. Their shared active motif, Y - - - R, is found in laminin (Ln) peptide YIGSR, which binds Ln receptor 67LR, a known high-affinity ligand of PEDF 34-mer.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Neovascularización Coroidal/prevención & control , Proteínas del Ojo/uso terapéutico , Factores de Crecimiento Nervioso/uso terapéutico , Oligopéptidos/uso terapéutico , Serpinas/uso terapéutico , Administración Oftálmica , Inhibidores de la Angiogénesis/química , Animales , Apoptosis , Neovascularización Coroidal/metabolismo , Neovascularización Coroidal/patología , Modelos Animales de Enfermedad , Portadores de Fármacos , Electrorretinografía , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Proteínas del Ojo/química , Ratones , Ratones Endogámicos C57BL , Factores de Crecimiento Nervioso/química , Oligopéptidos/química , Soluciones Oftálmicas , Profármacos , Conejos , Ratas , Serpinas/química
7.
Am J Physiol Cell Physiol ; 315(4): C457-C473, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29874109

RESUMEN

The basolateral membrane anion conductance of the retinal pigment epithelium (RPE) is a key component of the transepithelial Cl- transport pathway. Although multiple Cl- channels have been found to be expressed in the RPE, the components of the resting Cl- conductance have not been identified. In this study, we used the patch-clamp method to characterize the ion selectivity of the anion conductance in isolated mouse RPE cells and in excised patches of RPE basolateral and apical membranes. Relative permeabilities ( PA/ PCl) calculated from reversal potentials measured in intact cells under bi-ionic conditions were as follows: SCN- >> ClO4- > [Formula: see text] > I- > Br- > Cl- >> gluconate. Relative conductances ( GA/ GCl) followed a similar trend of SCN- >> ClO4- > [Formula: see text] > I- > Br- ≈Cl- >> gluconate. Whole cell currents were highly time-dependent in 10 mM external SCN-, reflecting collapse of the electrochemical potential gradient due to SCN- accumulation or depletion intracellularly. When the membrane potential was held at -120 mV to minimize SCN- accumulation in cells exposed to 10 mM SCN-, the instantaneous current reversed at -90 mV, revealing that PSCN/ PCl is approximately 500. Macroscopic current recordings from outside-out patches demonstrated that both the basolateral and apical membranes exhibit SCN- conductances, with the basolateral membrane having a larger SCN- current density and higher relative permeability for SCN-. Our results suggest that the RPE basolateral and apical membranes contain previously unappreciated anion channels or electrogenic transporters that may mediate the transmembrane fluxes of SCN- and Cl-.


Asunto(s)
Células Epiteliales/metabolismo , Potenciales de la Membrana/fisiología , Pigmentos Retinianos/metabolismo , Tiocianatos/metabolismo , Animales , Aniones/metabolismo , Membrana Celular/metabolismo , Canales de Cloruro/metabolismo , Cloruros/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
8.
J Neuroinflammation ; 14(1): 14, 2017 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-28103888

RESUMEN

BACKGROUND: The bromodomain and extraterminal domain (BET) family proteins (BET2, BET3, and BET4) "read" (bind) histone acetylation marks via two distinct bromodomains (Brom1 and Brom2) facilitating transcriptional activation. These epigenetic "readers" play crucial roles in pathogenic processes such as inflammation. The role of BETs in influencing the degenerative process in the retina is however unknown. METHODS: We employed the rd10 mouse model (Pde6b rd10 mutation) of retinitis pigmentosa (RP) to examine the involvement of BET proteins in retinal neurodegeneration. RESULTS: Inhibition of BET activity by intravitreal delivery of JQ1, a BET-specific inhibitor binding both Brom1 and Brom2, ameliorated photoreceptor degeneration and improved electroretinographic function. Rescue effects of JQ1 were related to the suppression of retinal microglial activation in vivo, as determined by decreased immunostaining of activation markers (IBA1, CD68, TSPO) and messenger RNA (mRNA) levels of inflammatory cytokines in microglia purified from rd10 retinas. JQ1 pre-treatment also suppressed microglial activation in vitro, decreasing microglial proliferation, migration, and mRNA expression of inflammatory cytokines (TNFα, MCP-1, IL-1ß, IL-6, and RANTES). Expression of BET2, but not BET3 and BET4, was significantly elevated during photoreceptor degeneration at postnatal day (PN)24 in retinas of rd10 mice relative to age-matched wild-type controls. siRNA knockdown of BET2 but not BET4, and the inhibitor of Brom2 (RVX208) but not of Brom1 (Olinone), decreased microglial activation. CONCLUSIONS: These findings indicate that BET inhibition rescues photoreceptor degeneration likely via the suppression of microglial activation and implicates BET interference as a potential therapeutic strategy for the treatment of degenerative retinal diseases.


Asunto(s)
Modelos Animales de Enfermedad , Epigénesis Genética/fisiología , Proteínas del Tejido Nervioso/deficiencia , Células Fotorreceptoras/metabolismo , Receptores de Superficie Celular/deficiencia , Retinitis Pigmentosa/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Células Fotorreceptoras/patología , Receptores de Superficie Celular/genética , Degeneración Retiniana/genética , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/patología
9.
Am J Physiol Cell Physiol ; 311(3): C418-36, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27440660

RESUMEN

Defects in the outer blood-retinal barrier have significant impact on the pathogenesis of diabetic retinopathy and macular edema. However, the detailed mechanisms involved remain largely unknown. This is, in part, attributed to the lack of suitable animal and cell culture models, including those of mouse origin. We recently reported a method for the culture of retinal pigment epithelial (RPE) cells from wild-type and transgenic mice. The RPE cells are responsible for maintaining the integrity of the outer blood-retinal barrier whose dysfunction during diabetes has a significant impact on vision. Here we determined the impact of high glucose on the function of RPE cells. We showed that high glucose conditions resulted in enhanced migration and increased the level of oxidative stress in RPE cells, but minimally impacted their rate of proliferation and apoptosis. High glucose also minimally affected the cell-matrix and cell-cell interactions of RPE cells. However, the expression of integrins and extracellular matrix proteins including pigment epithelium-derived factor (PEDF) were altered under high glucose conditions. Incubation of RPE cells with the antioxidant N-acetylcysteine under high glucose conditions restored normal migration and PEDF expression. These cells also exhibited increased nuclear localization of the antioxidant transcription factor Nrf2 and ZO-1, reduced levels of ß-catenin and phagocytic activity, and minimal effect on production of vascular endothelial growth factor, inflammatory cytokines, and Akt, MAPK, and Src signaling pathways. Thus high glucose conditions promote RPE cell migration through increased oxidative stress and expression of PEDF without a significant effect on the rate of proliferation and apoptosis.


Asunto(s)
Movimiento Celular/fisiología , Proteínas del Ojo/metabolismo , Glucosa/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Estrés Oxidativo/fisiología , Serpinas/metabolismo , Acetilcisteína/metabolismo , Animales , Antioxidantes/metabolismo , Apoptosis/fisiología , Células Cultivadas , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Integrinas/metabolismo , Ratones , Ratones Transgénicos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/fisiología , Pigmentos Retinianos/metabolismo , Transducción de Señal/fisiología , Factor A de Crecimiento Endotelial Vascular/metabolismo , beta Catenina/metabolismo
10.
Mol Genet Metab ; 118(3): 147-152, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27324283

RESUMEN

Cell lines are used to model a disease and provide valuable information regarding phenotype, mechanism, and response to novel therapies. Derived from individuals of diverse genetic backgrounds, the cell's genetic complement predicts the phenotype, and although some lines have been sequenced, little emphasis has been placed on genotyping. Toll-like receptors (TLRs) are essential in initiating the inflammatory cascade in response to infection. TLR single nucleotide polymorphism (SNP) alleles may predict an altered innate immune response: a SNP can affect TLR-dependent pathways and may alter experimental results. Thus, genotype variation may have far-reaching implications when using cell lines to model phenotypes. We recommend that cell lines be genotyped and cataloged in a fashion similar to that used for bacteria, with cumulative information being archived in an accessible central database to facilitate the understanding of SNP cell phenotypes reported in the literature.


Asunto(s)
Inmunidad Innata , Polimorfismo de Nucleótido Simple , Receptores Toll-Like/genética , Línea Celular , Genotipo , Humanos , Modelos Biológicos , Fenotipo , Transducción de Señal
11.
Hum Mutat ; 36(7): 720-7, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25921210

RESUMEN

Mutations in the KCNJ13 gene that encodes the inwardly rectifying potassium channel Kir7.1 cause snowflake vitreoretinal degeneration (SVD) and leber congenital amaurosis (LCA). Kir7.1 controls the microenvironment between the photoreceptors and the retinal pigment epithelium (RPE) and also contributes to the function of other organs such as uterus and brain. Heterologous expressions of the mutant channel have suggested a dominant-negative loss of Kir7.1 function in SVD, but parallel studies in LCA16 have been lacking. Herein, we report the identification of a novel nonsense mutation in the second exon of the KCNJ13 gene that leads to a premature stop codon in association with LCA16. We have determined that the mutation results in a severe truncation of the Kir7.1 C-terminus, alters protein localization, and disrupts potassium currents. Coexpression of the mutant and wild-type channel has no negative influence on the wild-type channel function, consistent with the normal clinical phenotype of carrier individuals. By suppressing Kir7.1 function in mice, we were able to reproduce the severe LCA electroretinogram phenotype. Thus, we have extended the observation that Kir7.1 mutations are associated with vision disorders to include novel insights into the molecular mechanism of disease pathobiology in LCA16.


Asunto(s)
Codón sin Sentido , Oftalmopatías/genética , Amaurosis Congénita de Leber/genética , Canales de Potasio de Rectificación Interna/genética , Animales , Niño , Humanos , Amaurosis Congénita de Leber/metabolismo , Masculino , Ratones , Medio Oriente , Fenotipo , Canales de Potasio de Rectificación Interna/metabolismo
12.
Hum Mol Genet ; 22(3): 593-607, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23139242

RESUMEN

Best disease (BD) is an inherited degenerative disease of the human macula that results in progressive and irreversible central vision loss. It is caused by mutations in the retinal pigment epithelium (RPE) gene BESTROPHIN1 (BEST1), which, through mechanism(s) that remain unclear, lead to the accumulation of subretinal fluid and autofluorescent waste products from shed photoreceptor outer segments (POSs). We employed human iPS cell (hiPSC) technology to generate RPE from BD patients and unaffected siblings in order to examine the cellular and molecular processes underlying this disease. Consistent with the clinical phenotype of BD, RPE from mutant hiPSCs displayed disrupted fluid flux and increased accrual of autofluorescent material after long-term POS feeding when compared with hiPSC-RPE from unaffected siblings. On a molecular level, RHODOPSIN degradation after POS feeding was delayed in BD hiPSC-RPE relative to unaffected sibling hiPSC-RPE, directly implicating impaired POS handling in the pathophysiology of the disease. In addition, stimulated calcium responses differed between BD and normal sibling hiPSC-RPE, as did oxidative stress levels after chronic POS feeding. Subcellular localization, fractionation and co-immunoprecipitation experiments in hiPSC-RPE and human prenatal RPE further linked BEST1 to the regulation and release of endoplasmic reticulum calcium stores. Since calcium signaling and oxidative stress are critical regulators of fluid flow and protein degradation, these findings likely contribute to the clinical picture of BD. In a larger context, this report demonstrates the potential to use patient-specific hiPSCs to model and study maculopathies, an important class of blinding disorders in humans.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Distrofia Macular Viteliforme/genética , Distrofia Macular Viteliforme/fisiopatología , Animales , Bestrofinas , Calcio/metabolismo , Bovinos , Diferenciación Celular , Línea Celular , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Regulación de la Expresión Génica , Homeostasis , Humanos , Inmunohistoquímica , Inmunoprecipitación , Mácula Lútea/patología , Microscopía Electrónica de Transmisión , Estrés Oxidativo , Fagocitosis , Segmento Externo de las Células Fotorreceptoras Retinianas/metabolismo , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/patología , Distrofia Macular Viteliforme/metabolismo
13.
Ophthalmic Genet ; 45(1): 103-107, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37218682

RESUMEN

PACS1 syndrome, also referred to as Schuurs-Hoeijmakers syndrome, is a multisystemic developmental disorder caused by a specific pathogenic variant in the PACS1 (phosphofurin acidic cluster sorting protein 1) gene. Ocular findings in PACS1 syndrome are known to include iris, retina, optic nerve coloboma, myopia, nystagmus, and strabismus. Here, we present the cases of two patients referred to the University of Wisconsin-Madison Department of Ophthalmology and Visual Sciences for ocular evaluation. The first patient is a 14-month-old female who, at 3 months of age, was found to have a depressed rod and cone response on electroretinogram (ERG), consistent with possible retinal dystrophy (RD). This feature has not been previously described in PACS1 syndrome and joins a growing list of calls for expanding the PACS1 phenotype. The second case illustrates a 5-year-old male referred for ocular screening after diagnosing PACS1 syndrome and underwent ERG without abnormal findings. These cases demonstrate the significant variability in the ophthalmic presentation of PACS1 syndrome and the need for early screening. These novel findings may have implications in understanding the mechanism of the PACS1 protein and its role in retinal ciliary phototransduction in photoreceptors.


Asunto(s)
Distrofias Retinianas , Masculino , Humanos , Femenino , Lactante , Preescolar , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/genética , Retina , Síndrome , Células Fotorreceptoras Retinianas Conos/fisiología , Electrorretinografía , Proteínas de Transporte Vesicular
14.
Neurochem Int ; 163: 105471, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36592700

RESUMEN

The intricate system of connections between the eye and the brain implies that there are common pathways for the eye and brain that get activated following injury. Hypoxia-ischemia (HI) related encephalopathy is a consequence of brain injury caused by oxygen and blood flow deprivation that may result in visual disturbances and neurodevelopmental disorders in surviving neonates. We have previously shown that the tyrosine receptor kinase B (TrkB) agonist/modulator improves neuronal survival and long-term neuroprotection in a sexually differential way. In this study, we tested the hypotheses that; 1) TrkB agonist therapy improves the visual function in a sexually differential way; 2) Visual function detected by electroretinogram (ERG) correlates with severity of brain injury detected by magnetic resonance (MRI) imaging following neonatal HI in mice. To test our hypotheses, we used C57/BL6 mice at postnatal day (P) 9 and subjected them to either Vannucci's rodent model of neonatal HI or sham surgery. ERG was performed at P 30, 60, and 90. MRI was performed following the completion of the ERG. ERG in these mice showed that the a-wave is normal, but the b-wave amplitude is severely abnormal, reducing the b/a wave amplitude ratio. Inner retina function was found to be perturbed as we detected severely attenuated oscillatory potential after HI. No sex differences were detected in the injury and severity pattern to the retina as well as in response to 7,8-DHF therapy. Strong correlations were detected between the percent change in b/a ratio and percent hemispheric/hippocampal tissue loss obtained by MRI, suggesting that ERG is a valuable noninvasive tool that can predict the long-term severity of brain injury.


Asunto(s)
Lesiones Encefálicas , Hipoxia-Isquemia Encefálica , Animales , Ratones , Hipoxia-Isquemia Encefálica/metabolismo , Animales Recién Nacidos , Retina/metabolismo , Hipoxia , Isquemia/patología , Lesiones Encefálicas/patología
15.
J Clin Invest ; 133(19)2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37561581

RESUMEN

Clinical genome editing is emerging for rare disease treatment, but one of the major limitations is the targeting of CRISPR editors' delivery. We delivered base editors to the retinal pigmented epithelium (RPE) in the mouse eye using silica nanocapsules (SNCs) as a treatment for retinal degeneration. Leber congenital amaurosis type 16 (LCA16) is a rare pediatric blindness caused by point mutations in the KCNJ13 gene, a loss of function inwardly rectifying potassium channel (Kir7.1) in the RPE. SNCs carrying adenine base editor 8e (ABE8e) mRNA and sgRNA precisely and efficiently corrected the KCNJ13W53X/W53X mutation. Editing in both patient fibroblasts (47%) and human induced pluripotent stem cell-derived RPE (LCA16-iPSC-RPE) (17%) showed minimal off-target editing. We detected functional Kir7.1 channels in the edited LCA16-iPSC-RPE. In the LCA16 mouse model (Kcnj13W53X/+ΔR), RPE cells targeted SNC delivery of ABE8e mRNA preserved normal vision, measured by full-field electroretinogram (ERG). Moreover, multifocal ERG confirmed the topographic measure of electrical activity primarily originating from the edited retinal area at the injection site. Preserved retina structure after treatment was established by optical coherence tomography (OCT). This preclinical validation of targeted ion channel functional rescue, a challenge for pharmacological and genomic interventions, reinforced the effectiveness of nonviral genome-editing therapy for rare inherited disorders.


Asunto(s)
Canalopatías , Células Madre Pluripotentes Inducidas , Ratones , Animales , Humanos , Niño , Edición Génica , Canalopatías/genética , ARN Guía de Sistemas CRISPR-Cas , Retina , Epitelio Pigmentado de la Retina , Mutación , ARN Mensajero
16.
Am J Physiol Cell Physiol ; 302(5): C821-33, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22135213

RESUMEN

Recently, we demonstrated the expression of KCNQ1, KCNQ4, and KCNQ5 transcripts in monkey retinal pigment epithelium (RPE) and showed that the M-type current in RPE cells is blocked by the specific KCNQ channel blocker XE991. Using patch-clamp electrophysiology, we investigated the pharmacological sensitivity of the M-type current in isolated monkey RPE cells to elucidate the subunit composition of the channel. Most RPE cells exhibited an M-type current with a voltage for half-maximal activation of approximately -35 mV. The M-type current activation followed a double-exponential time course and was essentially complete within 1 s. The M-type current was inhibited by micromolar concentrations of the nonselective KCNQ channel blockers linopirdine and XE991 but was relatively insensitive to block by 10 µM chromanol 293B or 135 mM tetraethylammonium (TEA), two KCNQ1 channel blockers. The M-type current was activated by 1) 10 µM retigabine, an opener of all KCNQ channels except KCNQ1, 2) 10 µM zinc pyrithione, which augments all KCNQ channels except KCNQ3, and 3) 50 µM N-ethylmaleimide, which activates KCNQ2, KCNQ4, and KCNQ5, but not KCNQ1 or KCNQ3, channels. Application of cAMP, which activates KCNQ1 and KCNQ4 channels, had no significant effect on the M-type current. Finally, diclofenac, which activates KCNQ2/3 and KCNQ4 channels but inhibits KCNQ5 channels, inhibited the M-type current in the majority of RPE cells but activated it in others. The results indicate that the M-type current in monkey RPE is likely mediated by channels encoded by KCNQ4 and KCNQ5 subunits.


Asunto(s)
Canales de Potasio KCNQ/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Animales , Carbamatos/farmacología , Células Cultivadas , Cromanos/farmacología , Etilmaleimida/farmacología , Indoles/farmacología , Canales de Potasio KCNQ/antagonistas & inhibidores , Macaca fascicularis , Macaca mulatta , Neuronas/metabolismo , Compuestos Organometálicos/farmacología , Técnicas de Placa-Clamp , Fenilendiaminas/farmacología , Potasio/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/metabolismo , Piridinas/farmacología , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/efectos de los fármacos , Sulfonamidas/farmacología , Tetraetilamonio/farmacología
17.
Mol Genet Metab ; 105(1): 64-72, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22079268

RESUMEN

Inwardly rectifying potassium (Kir) channels are essential for maintaining normal potassium homeostasis and the resting membrane potential. As a consequence, mutations in Kir channels cause debilitating diseases ranging from cardiac failure to renal, ocular, pancreatic, and neurological abnormalities. Structurally, Kir channels consist of two trans-membrane domains, a pore-forming loop that contains the selectivity filter and two cytoplasmic polar tails. Within the cytoplasmic structure, clusters of amino acid sequences form regulatory domains that interact with cellular metabolites to control the opening and closing of the channel. In this review, we present an overview of Kir channel function and recent progress in the characterization of selected Kir channel mutations that lie in and near a C-terminal cytoplasmic 'hotspot' domain. The resultant molecular mechanisms by which the loss or gain of channel function leads to organ failure provide potential opportunities for targeted therapeutic interventions for this important group of channelopathies.


Asunto(s)
Mutación/genética , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Secuencia de Aminoácidos , Humanos , Activación del Canal Iónico , Datos de Secuencia Molecular , Canales de Potasio de Rectificación Interna/química
18.
Biomed Opt Express ; 13(6): 3476-3492, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35781966

RESUMEN

Photoreceptors are the key functional cell types responsible for the initiation of vision in the retina. Phototransduction involves isomerization and conversion of vitamin A compounds, known as retinoids, and their recycling through the visual cycle. We demonstrate a functional readout of the visual cycle in photoreceptors within stem cell-derived retinal organoids and mouse retinal explants based on spectral and lifetime changes in autofluorescence of the visual cycle retinoids after exposure to light or chemical stimuli. We also apply a simultaneous two- and three-photon excitation method that provides specific signals and increases contrast between these retinoids, allowing for reliable detection of their presence and conversion within photoreceptors. This multiphoton imaging technique resolves the slow dynamics of visual cycle reactions and can enable high-throughput functional screening of retinal tissues and organoid cultures with single-cell resolution.

19.
Sci Rep ; 12(1): 756, 2022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-35031662

RESUMEN

Aging is a significant factor in the development of age-related diseases but how aging disrupts cellular homeostasis to cause age-related retinal disease is unknown. Here, we further our studies on transmembrane protein 135 (Tmem135), a gene involved in retinal aging, by examining the transcriptomic profiles of wild-type, heterozygous and homozygous Tmem135 mutant posterior eyecup samples through RNA sequencing (RNA-Seq). We found significant gene expression changes in both heterozygous and homozygous Tmem135 mutant mouse eyecups that correlate with visual function deficits. Further analysis revealed that expression of many genes involved in lipid metabolism are changed due to the Tmem135 mutation. Consistent with these changes, we found increased lipid accumulation in mutant Tmem135 eyecup samples. Since mutant Tmem135 mice have similar ocular pathologies as human age-related macular degeneration (AMD) eyes, we compared our homozygous Tmem135 mutant eyecup RNA-Seq dataset with transcriptomic datasets of human AMD donor eyes. We found similar changes in genes involved in lipid metabolism between the homozygous Tmem135 mutant eyecups and AMD donor eyes. Our study suggests that the Tmem135 mutation affects lipid metabolism as similarly observed in human AMD eyes, thus Tmem135 mutant mice can serve as a good model for the role of dysregulated lipid metabolism in AMD.


Asunto(s)
Ojo/metabolismo , Metabolismo de los Lípidos/genética , Degeneración Macular/etiología , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Mutación , Animales , Modelos Animales de Enfermedad , Humanos , Degeneración Macular/genética , Ratones Mutantes
20.
J Control Release ; 336: 296-309, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34174352

RESUMEN

The rapid development of gene therapy and genome editing techniques brings up an urgent need to develop safe and efficient nanoplatforms for nucleic acids and CRISPR genome editors. Herein we report a stimulus-responsive silica nanoparticle (SNP) capable of encapsulating biomacromolecules in their active forms with a high loading content and loading efficiency as well as a well-controlled nanoparticle size (~50 nm). A disulfide crosslinker was integrated into the silica network, endowing SNP with glutathione (GSH)-responsive cargo release capability when internalized by target cells. An imidazole-containing component was incorporated into the SNP to enhance the endosomal escape capability. The SNP can deliver various cargos, including nucleic acids (e.g., DNA and mRNA) and CRISPR genome editors (e.g., Cas9/sgRNA ribonucleoprotein (RNP), and RNP with donor DNA) with excellent efficiency and biocompatibility. The SNP surface can be PEGylated and functionalized with different targeting ligands. In vivo studies showed that subretinally injected SNP conjugated with all-trans-retinoic acid (ATRA) and intravenously injected SNP conjugated with GalNAc can effectively deliver mRNA and RNP to murine retinal pigment epithelium (RPE) cells and liver cells, respectively, leading to efficient genome editing. Overall, the SNP is a promising nanoplatform for various applications including gene therapy and genome editing.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Animales , Sistemas CRISPR-Cas , Edición Génica , Glutatión , Ratones , ARN Mensajero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA