Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 21(4)2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32092951

RESUMEN

Epigallocatechin gallate (EGCG) is an inhibitor of DYRK1A, a serine/threonine kinase considered to be a major contributor of cognitive dysfunctions in Down syndrome (DS). Two clinical trials in adult patients with DS have shown the safety and efficacy to improve cognitive phenotypes using commercial green tea extract containing EGCG (45% content). In the present study, we performed a preclinical study using FontUp®, a new nutritional supplement with a chocolate taste specifically formulated for the nutritional needs of patients with DS and enriched with a standardized amount of EGCG in young mice overexpressing Dyrk1A (TgBACDyrk1A). This preparation is differential with previous one used, because its green tea extract has been purified to up 94% EGCG of total catechins. We analyzed the in vitro effect of green tea catechins not only for EGCG, but for others residually contained in FontUp®, on DYRK1A kinase activity. Like EGCG, epicatechin gallate was a noncompetitive inhibitor against ATP, molecular docking computations confirming these results. Oral FontUp® normalized brain and plasma biomarkers deregulated in TgBACDyrk1A, without negative effect on liver and cardiac functions. We compared the bioavailability of EGCG in plasma and brain of mice and have demonstrated that EGCG had well crossed the blood-brain barrier.


Asunto(s)
Encéfalo/efectos de los fármacos , Catequina/análogos & derivados , Síndrome de Down/dietoterapia , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Té/química , Animales , Antioxidantes/administración & dosificación , Antioxidantes/uso terapéutico , Disponibilidad Biológica , Biomarcadores/sangre , Biomarcadores/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/ultraestructura , Catequina/administración & dosificación , Catequina/efectos adversos , Catequina/química , Catequina/uso terapéutico , Suplementos Dietéticos , Síndrome de Down/sangre , Síndrome de Down/enzimología , Síndrome de Down/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Rastreo , Simulación del Acoplamiento Molecular , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/uso terapéutico , Polifenoles/análisis , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/química , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Regulación hacia Arriba , Quinasas DyrK
2.
FASEB J ; 32(6): 3108-3118, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29401599

RESUMEN

Although thioredoxin-interacting protein (TXNIP) is involved in a variety of biologic functions, the contribution of endothelial TXNIP has not been well defined. To investigate the endothelial function of TXNIP, we generated a TXNIP knockout mouse on the Cdh5-cre background (TXNIPfl/fl cdh5cre). Control (TXNIPfl/fl) and TXNIPfl/fl cdh5cre mice were fed a high protein-low carbohydrate (HP-LC) diet for 3 mo to induce metabolic stress. We found that TXNIPfl/fl and TXNIPfl/fl cdh5cre mice on an HP-LC diet displayed impaired glucose tolerance and dyslipidemia concretizing the metabolic stress induced. We evaluated the impact of this metabolic stress on mice with reduced endothelial TXNIP expression with regard to arterial structure and function. TXNIPfl/fl cdh5cre mice on an HP-LC diet exhibited less endothelial dysfunction than littermate mice on an HP-LC diet. These mice were protected from decreased aortic medial cell content, impaired aortic distensibility, and increased plasminogen activator inhibitor 1 secretion. This protective effect came with lower oxidative stress and lower inflammation, with a reduced NLRP3 inflammasome expression, leading to a decrease in cleaved IL-1ß. We also show the major role of TXNIP in inflammation with a knockdown model, using a TXNIP-specific, small interfering RNA included in a lipoplex. These findings demonstrate a key role for endothelial TXNIP in arterial impairments induced by metabolic stress, making endothelial TXNIP a potential therapeutic target.-Bedarida, T., Domingues, A., Baron, S., Ferreira, C., Vibert, F., Cottart, C.-H., Paul, J.-L., Escriou, V., Bigey, P., Gaussem, P., Leguillier, T., Nivet-Antoine, V. Reduced endothelial thioredoxin-interacting protein protects arteries from damage induced by metabolic stress in vivo.


Asunto(s)
Aorta/metabolismo , Proteínas Portadoras/metabolismo , Dislipidemias/metabolismo , Intolerancia a la Glucosa/metabolismo , Estrés Fisiológico , Tiorredoxinas/metabolismo , Animales , Aorta/patología , Proteínas Portadoras/genética , Dieta Baja en Carbohidratos/efectos adversos , Proteínas en la Dieta/efectos adversos , Proteínas en la Dieta/farmacología , Dislipidemias/inducido químicamente , Dislipidemias/genética , Dislipidemias/patología , Intolerancia a la Glucosa/inducido químicamente , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/patología , Inflamasomas/genética , Inflamasomas/metabolismo , Ratones , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/biosíntesis , Serpina E2/biosíntesis , Tiorredoxinas/genética
3.
J Mol Cell Cardiol ; 102: 34-44, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27876471

RESUMEN

PGC-1α, a key regulator of energy metabolism, seems to be a relevant therapeutic target to rectify the energy deficit observed in heart failure (HF). Since our previous work has shown positive effects of cobalamin (Cb) on PGC-1α cascade, we investigate the protective role of Cb in pressure overload-induced myocardial dysfunction. Mice were fed with normal diet (ND) or with Cb and folate supplemented diet (SD) 3weeks before and 4weeks after transverse aortic constriction (TAC). At the end, left ventricle hypertrophy and drop of ejection fraction were significantly lower in SD mice than in ND mice. Alterations in mitochondrial oxidative capacity, fatty acid oxidation and mitochondrial biogenesis transcription cascade were markedly improved by SD. In SD-TAC mice, lower expression level of the acetyltransferase GCN5 and upregulation of the methyltransferase PRMT1 were associated with a lower protein acetylation and a higher protein methylation levels. This was accompanied by a sustained expression of genes involved in mitochondrial biogenesis transcription cascade (Tfam, Nrf2, Cox1 and Cox4) after TAC in SD mice, suggesting a preserved activation of PGC-1α; this could be at least partly due to corrected acetylation/methylation status of this co-activator. The beneficial effect of the treatment would not be due to an effect of Cb and folate on oxidative stress or on homocysteinemia, which were unchanged by SD. These results showed that Cb and folate could protect the failing heart by preserving energy status through maintenance of mitochondrial biogenesis. It reinforces the concept of a metabolic therapy of HF.


Asunto(s)
Ácido Fólico/farmacología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Contracción Miocárdica/efectos de los fármacos , Vitamina B 12/farmacología , Animales , Biomarcadores , Células Cultivadas , Suplementos Dietéticos , Modelos Animales de Enfermedad , Metabolismo Energético , Insuficiencia Cardíaca/patología , Hiperhomocisteinemia/metabolismo , Ratones , Modelos Biológicos , Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Oxidación-Reducción , Estrés Oxidativo
4.
Biochim Biophys Acta ; 1861(4): 331-41, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26776055

RESUMEN

A diet rich in n-3/n-6 polyunsaturated fatty acids (PUFAs) is cardioprotective. Dietary PUFAs affect the cellular phospholipids composition, which may influence the function of membrane proteins. We investigated the impact of the membrane incorporation of several PUFAs on ABCA1-mediated cholesterol efflux, a key antiatherogenic pathway. Arachidonic acid (AA) (C20:4 n-6) and docosahexaenoic acid (DHA) (C22:6 n-3) decreased or increased cholesterol efflux from J774 mouse macrophages, respectively, whereas they had no effect on efflux from human monocyte-derived macrophages (HMDM). Importantly, eicosapentaenoic acid (EPA) (C20:5 n-3) induced a dose-dependent reduction of ABCA1 functionality in both cellular models (-28% for 70µM of EPA in HMDM), without any alterations in ABCA1 expression. These results show that PUFA membrane incorporation does not have the same consequences on cholesterol efflux from mouse and human macrophages. The EPA-treated HMDM exhibited strong phospholipid composition changes, with high levels of both EPA and its elongation product docosapentaenoic acid (DPA) (C22:5 n-3), which is associated with a decreased level of AA. In HMDM, EPA reduced the ATPase activity of the membrane transporter. Moreover, the activation of adenylate cyclase by forskolin and the inhibition of cAMP phosphodiesterase by isobutylmethylxanthine restored ABCA1 cholesterol efflux in EPA-treated human macrophages. In conclusion, EPA membrane incorporation reduces ABCA1 functionality in mouse macrophages as well as in primary human macrophages and this effect seems to be PKA-dependent in human macrophages.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/metabolismo , Membrana Celular/efectos de los fármacos , Colesterol/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ácido Eicosapentaenoico/farmacología , Macrófagos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Adenilil Ciclasas/metabolismo , Animales , Ácido Araquidónico/farmacología , Transporte Biológico , Membrana Celular/metabolismo , Células Cultivadas , Ácidos Docosahexaenoicos/farmacología , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Ácido Eicosapentaenoico/metabolismo , Ácidos Grasos Insaturados/metabolismo , Humanos , Macrófagos/enzimología , Ratones , Cultivo Primario de Células , Células RAW 264.7 , Especificidad de la Especie
5.
Biochim Biophys Acta ; 1862(9): 1495-503, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27216978

RESUMEN

Alcoholic liver diseases arise from complex phenotypes involving many genetic factors. It is quite common to find hyperhomocysteinemia in chronic alcoholic liver diseases, mainly due to deregulation of hepatic homocysteine metabolism. Dyrk1A, involved in homocysteine metabolism at different crossroads, is decreased in liver of hyperhomocysteinemic mice. Here, we hypothesized that Dyrk1A contributes to alcohol-induced hepatic impairment in mice. Control, hyperhomocysteinemic and mice overexpressing Dyrk1A were fed using a Lieber-DeCarli liquid diet with or without ethanol (5% v/v ethanol) for one month, and liver histological examination and liver biochemical function tests were performed. Plasma alanine aminotransferase and homocysteine levels were significantly decreased in mice overexpressing Dyrk1A compared to control mice with or without alcohol administration. On the contrary, the mean plasma alanine aminotransferase and homocysteine levels were significantly higher in hyperhomocysteinemic mice than that of control mice after alcohol administration. Paraoxonase 1 and CYP2E1, two phase I xenobiotic metabolizing enzymes, were found increased in the three groups of mice after alcohol administration. However, NQO1, a phase II enzyme, was only found increased in hyperhomocysteinemic mice after alcohol exposure, suggesting a greater effect of alcohol in liver of hyperhomocysteinemic mice. We observed positive correlations between hepatic alcohol dehydrogenase activity, Dyrk1A and ADH4 protein levels. Importantly, a deleterious effect of alcohol consumption on hepatic Dyrk1A protein level was found. Our study reveals on the one hand a role of Dyrk1A in ethanol metabolism and on the other hand a deleterious effect of alcohol administration on hepatic Dyrk1A level.


Asunto(s)
Etanol/metabolismo , Hepatopatías Alcohólicas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Alanina Transaminasa/sangre , Animales , Arildialquilfosfatasa/metabolismo , Cistationina betasintasa/deficiencia , Cistationina betasintasa/genética , Cistationina betasintasa/metabolismo , Modelos Animales de Enfermedad , Etanol/administración & dosificación , Etanol/toxicidad , Femenino , Homocisteína/metabolismo , Humanos , Hiperhomocisteinemia/etiología , Hiperhomocisteinemia/genética , Hiperhomocisteinemia/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Hepatopatías Alcohólicas/complicaciones , Hepatopatías Alcohólicas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Triglicéridos/metabolismo , Regulación hacia Arriba , Quinasas DyrK
6.
J Cell Biochem ; 118(10): 3480-3487, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28345768

RESUMEN

Transplant vasculopathy may be considered as an accelerated form of atherosclerosis resulting in chronic rejection of vascularized allografts. After organ transplantation, a diffuse intimal thickening is observed, leading to the development of an atherosclerosis plaque due to a significant monocyte infiltration. This results from a chronic inflammatory process induced by the immune response. In this study, we investigated the impact of two immunosuppressive drugs used in therapy initiated after organ transplantation, mycophenolate mofetil, and rapamycin, on the apoptotic response of monocytes induced or not by oxidized LDL. Here we show the pro-apoptotic effect of these two drugs through two distinct signaling pathways and we highlight a synergistic effect of rapamycin on apoptosis induced by oxidized LDL. In conclusion, since immunosuppressive therapy using mycophenolate mofetil or rapamycin can increase the cell death in a monocyte cell line, this treatment could exert similar effects on human monocytes in transplant patients, and thus, prevent transplant vasculopathy, atherosclerosis development, and chronic allograft rejection. J. Cell. Biochem. 118: 3480-3487, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Apoptosis/efectos de los fármacos , Monocitos/metabolismo , Ácido Micofenólico/farmacología , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Humanos , Lipoproteínas LDL/farmacología , Células U937
7.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(10 Pt A): 1079-1091, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28739279

RESUMEN

A diet containing a high n-3/n-6 polyunsaturated fatty acids (PUFA) ratio has cardioprotective properties. PUFAs incorporation into membranes influences the function of membrane proteins. We investigated the impact of the membrane incorporation of PUFAs, especially eicosapentaenoic acid (EPA) (C20:5 n-3), on the anti-atherogenic cholesterol efflux pathways. We used cholesteryl esters (CE)-loaded human monocyte-derived macrophages (HMDM) to mimic foam cells exposed to the FAs for a long period of time to ensure their incorporation into cellular membranes. Phospholipid fraction of EPA cells exhibited high levels of EPA and its elongation product docosapentaenoic acid (DPA) (C22:5 n-3), which was associated with a decreased level of arachidonic acid (AA) (C20:4 n-6). EPA 70µM reduced ABCA1-mediated cholesterol efflux to apolipoprotein (apo) AI by 30% without any alteration in ABCA1 expression. The other tested PUFAs, DPA, docosahexaenoic acid (DHA) (C22:6 n-3), and AA, were also able to reduce ABCA1 functionality while the monounsaturated oleic FA slightly decreased efflux and the saturated palmitic FA had no impact. Moreover, EPA also reduced cholesterol efflux to HDL mediated by the Cla-1 and ABCG1 pathways. EPA incorporation did not hinder efflux in free cholesterol-loaded HMDM and did not promote esterification of cholesterol. Conversely, EPA reduced the neutral hydrolysis of cytoplasmic CE by 24%. The reduced CE hydrolysis was likely attributed to the increase in cellular TG contents and/or the decrease in apo E secretion after EPA treatment. In conclusion, EPA membrane incorporation reduces cholesterol efflux in human foam cells by reducing the cholesteryl ester mobilization from lipid droplets.


Asunto(s)
Membrana Celular/metabolismo , Ésteres del Colesterol/metabolismo , Ácido Eicosapentaenoico , Gotas Lipídicas/metabolismo , Macrófagos/metabolismo , Transportador 1 de Casete de Unión a ATP/biosíntesis , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/biosíntesis , Ácido Eicosapentaenoico/farmacocinética , Ácido Eicosapentaenoico/farmacología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Lipoproteínas HDL/metabolismo , Masculino , Receptores Depuradores de Clase B/biosíntesis
8.
Gut ; 65(11): 1882-1894, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-26338827

RESUMEN

OBJECTIVE: Previous studies suggested that microRNA-21 may be upregulated in the liver in non-alcoholic steatohepatitis (NASH), but its role in the development of this disease remains unknown. This study aimed to determine the role of microRNA-21 in NASH. DESIGN: We inhibited or suppressed microRNA-21 in different mouse models of NASH: (a) low-density lipoprotein receptor-deficient (Ldlr-/-) mice fed a high-fat diet and treated with antagomir-21 or antagomir control; (b) microRNA-21-deficient and wild-type mice fed a methionine-choline-deficient (MCD) diet; (c) peroxisome proliferation-activator receptor α (PPARα)-deficient mice fed an MCD diet and treated with antagomir-21 or antagomir control. We assessed features of NASH and determined liver microRNA-21 levels and cell localisation. MicroRNA-21 levels were also quantified in the liver of patients with NASH, bland steatosis or normal liver and localisation was determined. RESULTS: Inhibiting or suppressing liver microRNA-21 expression reduced liver cell injury, inflammation and fibrogenesis without affecting liver lipid accumulation in Ldlr-/- fed a high-fat diet and in wild-type mice fed an MCD diet. Liver microRNA-21 was overexpressed, primarily in biliary and inflammatory cells, in mouse models as well as in patients with NASH, but not in patients with bland steatosis. PPARα, a known microRNA-21 target, implicated in NASH, was decreased in the liver of mice with NASH and restored following microRNA-21 inhibition or suppression. The effect of antagomir-21 was lost in PPARα-deficient mice. CONCLUSIONS: MicroRNA-21 inhibition or suppression decreases liver injury, inflammation and fibrosis, by restoring PPARα expression. Antagomir-21 might be a future therapeutic strategy for NASH.


Asunto(s)
MicroARNs/metabolismo , Enfermedad del Hígado Graso no Alcohólico , Oligonucleótidos , PPAR alfa/metabolismo , Animales , Dieta Alta en Grasa , Perfilación de la Expresión Génica/métodos , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Metabolismo de los Lípidos , Lipoproteínas LDL/metabolismo , Ratones , MicroARNs/antagonistas & inhibidores , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Oligonucleótidos/metabolismo , Oligonucleótidos/farmacología , PPAR alfa/antagonistas & inhibidores
9.
Traffic ; 15(3): 309-26, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24329906

RESUMEN

The small GTPases of the Rab family act as a molecular switch regulating various aspects of membrane trafficking through the selective recruitment of effector proteins. Whereas Rab7 has been classically involved in the regulation of transport within the endolysosomal network, persistent controversy remains as to whether Rab7 also plays a role in earlier steps of endosomal trafficking. In this study, we show that Rab7 depletion or inactivation results in enlargement of both early and late endosomes. Rab7 depletion led to the retention of a significant fraction of internalized low-density lipoproteins (LDL) mainly in enlarged early endosomes (EE). As a result, LDL processing and the transcriptional regulation of sterol-sensitive genes were impaired. We found that Rab7 activity was also required for the sorting of the mannose-6-phosphate receptor, the interferon alpha-receptor and the Shiga toxin B-subunit. In contrast, epidermal growth factor (EGF) sorting at the EE or the recycling of transferrin and LDL-R were not affected by Rab7 depletion. Our findings demonstrate that in addition to regulating late endosomes (LE) to lysosomes transport, Rab7 plays a functional role in the selective sorting of distinct cargos at the EE and that the Rab5 to Rab7 exchange occurs early in the endosomal maturation process.


Asunto(s)
Endosomas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Colesterol/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Células HeLa , Humanos , Transporte de Proteínas , Receptor IGF Tipo 2/metabolismo , Receptor de Interferón alfa y beta/metabolismo , Toxina Shiga II/metabolismo , Transferrina/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión a GTP rab7
10.
Circ Res ; 114(3): 434-43, 2014 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-24255059

RESUMEN

RATIONALE FOR STUDY: MicroRNAs (miRNAs) are small noncoding RNAs that regulate protein expression at post-transcriptional level. We hypothesized that a specific pool of endothelial miRNAs could be selectively regulated by flow conditions and inflammatory signals, and as such be involved in the development of atherosclerosis. OBJECTIVE: To identify miRNAs, called atheromiRs, which are selectively regulated by shear stress and oxidized low-density lipoproteins (oxLDL), and to determine their role in atherogenesis. METHODS AND RESULTS: Large-scale miRNA profiling in HUVECs identified miR-92a as an atheromiR candidate, whose expression is preferentially upregulated by the combination of low shear stress (SS) and atherogenic oxLDL. Ex vivo analysis of atheroprone and atheroprotected areas of mouse arteries and human atherosclerotic plaques demonstrated the preferential expression of miR-92a in atheroprone low SS regions. In Ldlr(-/-) mice, miR-92a expression was markedly enhanced by hypercholesterolemia, in particular in atheroprone areas of the aorta. Assessment of endothelial inflammation in gain- and loss-of-function experiments targeting miR-92a expression revealed that miR-92a regulated endothelial cell activation by oxLDL, more specifically under low SS conditions, which was associated with modulation of Kruppel-like factor 2 (KLF2), Kruppel-like factor 4 (KLF4), and suppressor of cytokine signaling 5. miR-92a expression was regulated by signal transducer and activator of transcription 3 in SS- and oxLDL-dependent manner. Furthermore, specific in vivo blockade of miR-92a expression in Ldlr(-/-) mice reduced endothelial inflammation and altered the development of atherosclerosis, decreasing plaque size and promoting a more stable lesion phenotype. CONCLUSIONS: Upregulation of miR-92a by oxLDL in atheroprone areas promotes endothelial activation and the development of atherosclerotic lesions. Therefore, miR-92a antagomir seems as a new atheroprotective therapeutic strategy.


Asunto(s)
Aterosclerosis/genética , Aterosclerosis/prevención & control , Regulación hacia Abajo/genética , Endotelio Vascular/metabolismo , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Animales , Aterosclerosis/patología , Endotelio Vascular/patología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Factor 4 Similar a Kruppel , Masculino , Ratones , Ratones Noqueados , MicroARNs/biosíntesis , Regulación hacia Arriba/genética
11.
Biochim Biophys Acta ; 1842(10): 1413-21, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25019598

RESUMEN

The preservation of a constant pool of free cholesterol (FC) is critical to ensure several functions of cardiomyocytes. We investigated the impact of the membrane incorporation of arachidonic acid (C20:4 ω6, AA) or docosahexaenoic acid (C22:6 ω3, DHA) as ω6 or ω3 polyunsaturated fatty acids (PUFAs) on cholesterol homeostasis in primary cultures of neonatal rat cardiac myocytes. We measured significant alterations to the phospholipid FA profiles, which had markedly different ω6/ω3 ratios between the AA and DHA cells (13 vs. 1). The AA cells showed a 2.7-fold lower cholesterol biosynthesis than the DHA cells. Overall, the AA cells showed 2-fold lower FC masses and 2-fold higher cholesteryl ester masses than the DHA cells. The AA cells had a lower FC to phospholipid ratio and higher triglyceride levels than the DHA cells. Moreover, the AA cells showed a 40% decrease in ATP binding cassette transporter A1 (ABCA1)-mediated and a 19% decrease in ABCG1-mediated cholesterol efflux than the DHA cells. The differences in cholesterol efflux pathways induced by AA or DHA incorporation were not caused by variations in ABCs transporter expression and were reduced when ABC transporters were overexpressed by exposure to LXR/RXR agonists. These results show that AA incorporation into cardiomyocyte membranes decreased the FC turnover by markedly decreasing the endogenous cholesterol synthesis and by decreasing the ABCA1- and ABCG1-cholesterol efflux pathways, whereas DHA had the opposite effects. We propose that these observations may partially contribute to the beneficial effects on the heart of a diet containing a high ω3/ω6 PUFA ratio.

12.
Biochim Biophys Acta ; 1832(6): 718-28, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23429073

RESUMEN

Hyperhomocysteinemia, characterized by high plasma homocysteine levels, is recognized as an independent risk factor for cardiovascular diseases. The increased synthesis of homocysteine, a product of methionine metabolism involving B vitamins, and its slower intracellular utilization cause increased flux into the blood. Plasma homocysteine level is an important reflection of hepatic methionine metabolism and the rate of processes modified by B vitamins as well as different enzyme activity. Lowering homocysteine might offer therapeutic benefits. However, approximately 50% of hyperhomocysteinemic patients due to cystathionine-beta-synthase deficiency are biochemically responsive to pharmacological doses of B vitamins. Therefore, effective treatments to reduce homocysteine levels are needed, and gene therapy could provide a novel approach. We recently showed that hepatic expression of DYRK1A, a serine/threonine kinase, is negatively correlated with plasma homocysteine levels in cystathionine-beta-synthase deficient mice, a mouse model of hyperhomocysteinemia. Therefore, Dyrk1a is a good candidate for gene therapy to normalize homocysteine levels. We then used an adenoviral construct designed to restrict expression of DYRK1A to hepatocytes, and found decreased plasma homocysteine levels after hepatocyte-specific Dyrk1a gene transfer in hyperhomocysteinemic mice. The elevation of pyridoxal phosphate was consistent with the increase in cystathionine-beta-synthase activity. Commensurate with the decreased plasma homocysteine levels, targeted hepatic expression of DYRK1A resulted in elevated plasma paraoxonase-1 activity and apolipoprotein A-I levels, and rescued the Akt/GSK3 signaling pathways in aorta of mice, which can prevent homocysteine-induced endothelial dysfunction. These results demonstrate that hepatocyte-restricted Dyrk1a gene transfer can offer a useful therapeutic targets for the development of new selective homocysteine lowering therapy.


Asunto(s)
Aorta/metabolismo , Apolipoproteína A-I/sangre , Terapia Genética , Hepatocitos/metabolismo , Homocisteína , Proteínas Serina-Treonina Quinasas/biosíntesis , Proteínas Tirosina Quinasas/biosíntesis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Aorta/patología , Cistationina betasintasa/genética , Cistationina betasintasa/metabolismo , Homocisteína/sangre , Hiperhomocisteinemia/sangre , Hiperhomocisteinemia/genética , Hiperhomocisteinemia/terapia , Ratones , Ratones Mutantes , Especificidad de Órganos/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Transducción Genética , Quinasas DyrK
13.
Am J Physiol Heart Circ Physiol ; 307(5): H649-57, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25015969

RESUMEN

High-protein-low-carbohydrate (HP-LC) diets have become widespread. Yet their deleterious consequences, especially on glucose metabolism and arteries, have already been underlined. Our previous study (2) has already shown glucose intolerance with major arterial dysfunction in very old mice subjected to an HP-LC diet. The hypothesis of this work was that this diet had an age-dependent deleterious metabolic and cardiovascular outcome. Two groups of mice, young and adult (3 and 6 mo old), were subjected for 12 wk to a standard or to an HP-LC diet. Glucose and lipid metabolism was studied. The cardiovascular system was explored from the functional stage with Doppler-echography to the molecular stage (arterial reactivity, mRNA, immunohistochemistry). Young mice did not exhibit any significant metabolic modification, whereas adult mice presented marked glucose intolerance associated with an increase in resistin and triglyceride levels. These metabolic disturbances were responsible for cardiovascular damages only in adult mice, with decreased aortic distensibility and left ventricle dysfunction. These seemed to be the consequence of arterial dysfunctions. Mesenteric arteries were the worst affected with a major oxidative stress, whereas aorta function seemed to be maintained with an appreciable role of cyclooxygenase-2 to preserve endothelial function. This study highlights for the first time the age-dependent deleterious effects of an HP-LC diet on metabolism, with glucose intolerance and lipid disorders and vascular (especially microvessels) and cardiac functions. This work shows that HP-LC lead to equivalent cardiovascular alterations, as observed in very old age, and underlines the danger of such diet.


Asunto(s)
Aorta/metabolismo , Dieta Baja en Carbohidratos/efectos adversos , Proteínas en la Dieta/administración & dosificación , Intolerancia a la Glucosa/etiología , Miocardio/metabolismo , Disfunción Ventricular Izquierda/etiología , Factores de Edad , Animales , Aorta/patología , Glucemia/metabolismo , Proteínas en la Dieta/efectos adversos , Ecocardiografía , Intolerancia a la Glucosa/metabolismo , Metabolismo de los Lípidos , Arterias Mesentéricas/metabolismo , Arterias Mesentéricas/patología , Ratones , Ratones Endogámicos C57BL , Miocardio/patología , Resistina/sangre , Triglicéridos/sangre , Disfunción Ventricular Izquierda/metabolismo
14.
Biochim Biophys Acta ; 1821(2): 303-12, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22074701

RESUMEN

Consumption of trans fatty acids (TFA) increase cardiovascular risk more than do saturated FA, but the mechanisms explaining their atherogenicity are still unclear. We investigated the impact of membrane incorporation of TFA on cholesterol efflux by exposing J774 mouse macrophages or human monocyte-derived macrophages (HMDM) to media enriched or not (standard medium) with industrially produced elaidic (trans-9 18:1) acid, naturally produced vaccenic (trans-11 18:1) acid (34 h, 70 µM) or palmitic acid. In J774 macrophages, elaidic and palmitic acid, but not vaccenic acid, reduced ABCA1-mediated efflux by ~23% without affecting aqueous diffusion, SR-BI or ABCG1-mediated pathways, and this effect was maintained in cholesterol-loaded cells. The impact of elaidic acid on the ABCA1 pathway was weaker in cholesterol-normal HMDM, but elaidic acid induced a strong reduction of ABCA1-mediated efflux in cholesterol-loaded cells (-36%). In J774 cells, the FA supplies had no impact on cellular free cholesterol or cholesteryl ester masses, the abundance of ABCA1 mRNA or the total and plasma membrane ABCA1 protein content. Conversely, TFA or palmitic acid incorporation induced strong modifications of the membrane FA composition with a decrease in the ratio of (cis-monounsaturated FA+polyunsaturated FA):(saturated FA+TFA), with elaidic and vaccenic acids representing each 20% and 13% of the total FA composition, respectively. Moreover, we demonstrated that cellular ATP was required for the effect of elaidic acid, suggesting that it contributes to atherogenesis by impairing ABCA1-mediated cholesterol efflux in macrophages, likely by decreasing the membrane fluidity, which could thereby reduce ATPase activity and the function of the transporter.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Colesterol/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ácido Oléico/farmacología , Transportador 1 de Casete de Unión a ATP , Transportadoras de Casetes de Unión a ATP/genética , Adenosina Trifosfato/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Antígenos CD36/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Difusión/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Monocitos/citología , Ácidos Oléicos/farmacología , Fosfolípidos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
15.
Mol Genet Metab ; 110(3): 371-7, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23920041

RESUMEN

BACKGROUND AND AIMS: Down syndrome is caused by trisomy of all or part of human chromosome 21. Individuals with Down syndrome present some metabolic abnormalities involving lipoproteins, notably lower high-density lipoprotein levels associated with altered lecithin:cholesterol acyltransferase activity and apolipoprotein A-I levels. DYRK1A is a kinase overexpressed in Down syndrome that can activate the STAT3 pathway, which is involved in lecithin:cholesterol acyltransferase expression. Therefore, we characterized the role of DYRK1A overexpression on lecithin:cholesterol acyltransferase activity and expression in mouse models. METHODS: Effects of Dyrk1a overexpression were examined in mice overexpressing Dyrk1a by ELISA, chemical analyses and Western blotting. RESULTS: Overexpression of DYRK1A decreased plasma lecithin:cholesterol acyltransferase activity and hepatic STAT3 activation, which was associated with activation of SHP2, a tyrosine phosphatase. Although hepatic apolipoprotein E and D levels were increased in mice overexpressing DYRK1A, decreased plasma lecithin:cholesterol acyltransferase activity was associated with decreased hepatic and plasma apolipoprotein A-I levels. High-density lipoprotein-cholesterol levels were also decreased in plasma despite similar total cholesterol and non-high-density lipoprotein-cholesterol levels. CONCLUSIONS: We identified the role of DYRK1A overexpression on altered lipoprotein metabolism.


Asunto(s)
Apolipoproteína A-I/sangre , Expresión Génica , Fosfatidilcolina-Esterol O-Aciltransferasa/sangre , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Animales , Apolipoproteínas D/metabolismo , Apolipoproteínas E/metabolismo , HDL-Colesterol/sangre , Activación Enzimática , Masculino , Ratones , Ratones Transgénicos , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Factor de Transcripción STAT3/metabolismo , Quinasas DyrK
16.
Eur J Nutr ; 52(3): 1243-50, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22899103

RESUMEN

PURPOSE: Hyperhomocysteinemia is well recognized as an independent risk factor for the development of premature atherosclerosis. Atherosclerosis, however, may be prevented by polyphenols, potent antioxidant compounds with anti-atherogenic properties. Previously, we used cystathionine beta synthase-deficient mice [Cbs (±)] fed a high-methionine diet-a murine model of hyperhomocysteinemia-to show that daily intake of a red wine polyphenolic extract, mainly comprised of catechin and epicatechin, has a beneficial effect on aortic expression of endothelial dysfunction biomarkers and pro-inflammatory cytokines. The aim of the present study was to understand whether catechin and epicatechin, in purified forms, have anti-atherogenic effects in hyperhomocysteinemia. METHODS: Cbs (±) mice received 50 µg of catechin and/or epicatechin daily in drinking water for 1 month. Plasma homocysteine (Hcy) level and aortic expression of several endothelial dysfunction biomarkers (Vcam-1, Icam-1, E-selectin, and Lox-1) and pro-inflammatory cytokines (Tnf-α, Il-6) were assessed. RESULTS: We found that both catechin and epicatechin had a beneficial effect on plasma homocysteine levels and endothelial dysfunction biomarker expression; however, only catechin had a beneficial effect on pro-inflammatory cytokine expression. Further, when both polyphenols were given, a beneficial effect was observed only on pro-inflammatory cytokine expression. CONCLUSIONS: Catechin seems to be a more potent anti-atherogenic compound than epicatechin in hyperhomocysteinemia and should be considered as a novel therapeutic approach against endothelial dysfunction induced by this condition.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Antioxidantes/uso terapéutico , Aorta/fisiopatología , Catequina/uso terapéutico , Citocinas/metabolismo , Endotelio Vascular/fisiopatología , Hiperhomocisteinemia/dietoterapia , Animales , Antiinflamatorios no Esteroideos/química , Antioxidantes/química , Aorta/inmunología , Aorta/metabolismo , Aterosclerosis/etiología , Aterosclerosis/prevención & control , Biomarcadores/metabolismo , Catequina/análogos & derivados , Cruzamientos Genéticos , Cistationina betasintasa/genética , Cistationina betasintasa/metabolismo , Suplementos Dietéticos , Regulación hacia Abajo , Endotelio Vascular/inmunología , Endotelio Vascular/metabolismo , Femenino , Hiperhomocisteinemia/inmunología , Hiperhomocisteinemia/metabolismo , Hiperhomocisteinemia/fisiopatología , Metionina/efectos adversos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Estereoisomerismo
17.
Talanta ; 256: 124314, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36753884

RESUMEN

Atherosclerosis - a cardiovascular disease and the primary cause of morbidity and mortality in industrialized countries - is linked to the existence of atherosclerotic plaques characterized by cholesterol-laden macrophages called foam cells. In these cells, cholesterol esters associated with triglycerides form lipid droplets (LD). The only way to remove this excess cholesterol is to promote free cholesterol efflux from macrophages to specific acceptors. It has been shown recently that eicosapentaenoic acid (EPA) reduces efflux on cholesterol-loaded THP-1 macrophages in vitro due to decreased cholesterol esters hydrolysis. These in vitro observations could reflect EPA's difficulty in facilitating in vivo the antiatherogenic process of cholesterol efflux within advanced atherosclerotic plaques. This work aims to study in vitro the impact of EPA on cholesterol esters hydrolysis in the LD of human THP-1 macrophages using vibrational Raman microspectroscopy. For this, we used deuterated EPA and recorded spectral images at the cell scale after different hydrolysis times. RESULTS: showed that EPA is involved in forming triglycerides and phospholipids of LD. Hydrolysis kinetics slowed down after 24 h, triglycerides increased, and the intensity of the characteristic bands linked to deuteration decreased. The size of LD without hydrolysis (H0) is higher than that after 24 h (H1) or 48 h (H2) of hydrolysis. The size decrease is sharper when going from H0 to H1 than from H1 to H2. Principal component analysis illustrated data' projection according to the cellular compartment, the hydrolysis time, and the supplementation of the medium.


Asunto(s)
Ésteres del Colesterol , Placa Aterosclerótica , Humanos , Ácido Eicosapentaenoico/farmacología , Hidrólisis , Gotas Lipídicas , Macrófagos , Colesterol , Triglicéridos
18.
Cell Rep ; 42(11): 113350, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37897726

RESUMEN

Although high-fat diet (HFD)-induced gut microbiota dysbiosis is known to affect atherosclerosis, the underlying mechanisms remain to be fully explored. Here, we show that the progression of atherosclerosis depends on a gut microbiota shaped by an HFD but not a high-cholesterol (HC) diet and, more particularly, on low fiber (LF) intake. Mechanistically, gut lymphoid cells impacted by HFD- or LF-induced microbiota dysbiosis highly proliferate in mesenteric lymph nodes (MLNs) and migrate from MLNs to the periphery, which fuels T cell accumulation within atherosclerotic plaques. This is associated with the induction of mucosal addressin cell adhesion molecule 1 (MAdCAM-1) within plaques and the presence of enterotropic lymphocytes expressing ß7 integrin. MLN resection or lymphocyte deficiency abrogates the pro-atherogenic effects of a microbiota shaped by LF. Our study shows a pathological link between a diet-shaped microbiota, gut immune cells, and atherosclerosis, suggesting that a diet-modulated microbiome might be a suitable therapeutic target to prevent atherosclerosis.


Asunto(s)
Aterosclerosis , Microbiota , Placa Aterosclerótica , Humanos , Animales , Ratones , Disbiosis/inducido químicamente , Linfocitos , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL
19.
J Mol Cell Cardiol ; 53(2): 196-205, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22668787

RESUMEN

Although cholesterol-rich microdomains are highly involved in the functions of cardiomyocytes, the cholesterol homeostasis is largely unknown in these cells. We developed experimental procedures to assess cholesterol synthesis, cholesterol masses and cholesterol efflux from primary cultures of cardiac myocytes obtained from 2 to 4 days old Wistar rats. We first observed that cardiomyocytes poorly internalized exogenously supplied native or modified LDL and that free cholesterol (FC) efflux to free apolipoprotein AI (apo AI) and to HDL was mediated by ATP binding cassette transporter A1 (ABCA1) and likely by ATP binding cassette transporter G1 (ABCG1), respectively, which are both upregulated by liver X receptor/retinoid X receptor (LXR/RXR) activation. We then investigated the consequences of cholesterol synthesis inhibition on cholesterol homeostasis using an HMGCoA reductase inhibitor (pravastatin, 90% effective concentration (EC90): 0.11 mM, 18 h). We observed no impact of cholesterol synthesis inhibition on the FC or cholesteryl ester (CE) masses. Consistently with no FC mass changes, pravastatin treatment had no notable impact on LDL receptors mRNA expression or on the capacity of cardiomyocytes to uptake radiolabeled LDL. Conversely, pravastatin treatment induced a significant decrease of cholesterol efflux to both apo AI and HDL whereas the passive aqueous diffusion remained unchanged. The cholesterol efflux pathway reductions induced by cholesterol synthesis inhibition were not caused by a reduction of ABC transporter expression (mRNA or protein). These results show that cardiac myocytes down-regulate active cholesterol efflux processes when endogenous cholesterol synthesis is inhibited, allowing them to preserve cholesterol homeostasis.


Asunto(s)
Colesterol/metabolismo , Miocitos Cardíacos/metabolismo , Transportador 1 de Casete de Unión a ATP , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1 , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Células Cultivadas , LDL-Colesterol/metabolismo , Homeostasis/efectos de los fármacos , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Miocitos Cardíacos/efectos de los fármacos , Pravastatina/farmacología , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos
20.
Biochim Biophys Acta ; 1812(6): 699-702, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21447386

RESUMEN

Diabetes mellitus is associated with increased risk for cardiovascular disorders, which are major causes of mortality in this disease. Hyperhomocysteinemia, defined by high plasma homocysteine levels, is an independent risk factor for the development of cardiovascular diseases. Type 2 diabetic patients have higher circulating homocysteine levels than healthy subjects and these levels are even higher in plasma of obese than nonobese diabetic patients. Homocysteine metabolism that has been studied in 2 animal models of type 2 diabetes with obesity led to conflicting data. The aim of the present study was to analyze homocysteine metabolism in a spontaneous nonobese model of type 2 diabetes, the Goto-Kakizaki rats at various successive and well characterized stages of the disease: during early postnatal normoglycemia, at the onset of hyperglycemia (around weaning), and during chronic mild hyperglycemia with progressive insulin resistance. Compared to age-matched Wistar controls, Goto-Kakizaki rats showed lower plasma levels of homocysteine and a falling trend in its major byproduct antioxidant, glutathione, from the prediabetic stage onwards. Concomitantly, Goto-Kakizaki rats exhibited increased liver activity of cystathionine beta synthase, which catalyzes the condensation of homocysteine with serine in the first step of the transsulfuration pathway. These results emphasize a strong association between homocysteine metabolism and insulin via the first step of the hepatic transsulfuration pathway in Goto-Kakizaki rats.


Asunto(s)
Diabetes Mellitus Tipo 2/sangre , Homocisteína/sangre , Factores de Edad , Animales , Peso Corporal , Modelos Animales de Enfermedad , Glutatión/metabolismo , Resistencia a la Insulina , Masculino , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA