Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cancer ; 22(1): 40, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36810079

RESUMEN

Lung cancer is the primary cause of mortality in the United States and around the globe. Therapeutic options for lung cancer treatment include surgery, radiation therapy, chemotherapy, and targeted drug therapy. Medical management is often associated with the development of treatment resistance leading to relapse. Immunotherapy is profoundly altering the approach to cancer treatment owing to its tolerable safety profile, sustained therapeutic response due to immunological memory generation, and effectiveness across a broad patient population. Different tumor-specific vaccination strategies are gaining ground in the treatment of lung cancer. Recent advances in adoptive cell therapy (CAR T, TCR, TIL), the associated clinical trials on lung cancer, and associated hurdles are discussed in this review. Recent trials on lung cancer patients (without a targetable oncogenic driver alteration) reveal significant and sustained responses when treated with programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) checkpoint blockade immunotherapies. Accumulating evidence indicates that a loss of effective anti-tumor immunity is associated with lung tumor evolution. Therapeutic cancer vaccines combined with immune checkpoint inhibitors (ICI) can achieve better therapeutic effects. To this end, the present article encompasses a detailed overview of the recent developments in the immunotherapeutic landscape in targeting small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Additionally, the review also explores the implication of nanomedicine in lung cancer immunotherapy as well as the combinatorial application of traditional therapy along with immunotherapy regimens. Finally, ongoing clinical trials, significant obstacles, and the future outlook of this treatment strategy are also highlighted to boost further research in the field.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Inmunoterapia , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Antígeno B7-H1 , Carcinoma de Pulmón de Células no Pequeñas/terapia , Neoplasias Pulmonares/terapia , Recurrencia Local de Neoplasia , Carcinoma Pulmonar de Células Pequeñas/terapia
2.
Arterioscler Thromb Vasc Biol ; 41(1): 220-233, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33086870

RESUMEN

OBJECTIVE: Previous studies have shown that deficiency of M-CSF (macrophage colony-stimulating factor; or CSF1 [colony stimulating factor 1]) dramatically reduces atherosclerosis in hyperlipidemic mice. We characterize the underlying mechanism and investigate the relevant sources of CSF1 in lesions. Approach and Results: We quantitatively assessed the effects of CSF1 deficiency on macrophage proliferation and apoptosis in atherosclerotic lesions. Staining of aortic lesions with markers of proliferation, Ki-67 and bromodeoxyuridine, revealed around 40% reduction in CSF1 heterozygous (Csf1+/-) as compared with WT (wild type; Csf1+/+) mice. Similarly, staining with a marker of apoptosis, activated caspase-3, revealed a 3-fold increase in apoptotic cells in Csf1+/- mice. Next, we determined the cellular sources of CSF1 contributing to lesion development. Cell-specific deletions of Csf1 in smooth muscle cells using SM22α-Cre (smooth muscle protein 22-alpha-Cre) reduced lesions by about 40%, and in endothelial cells, deletions with Cdh5-Cre (VE-cadherin-Cre) reduced lesions by about 30%. Macrophage-specific deletion with LysM-Cre (lysozyme M-Cre), on the other hand, did not significantly reduce lesions size. Transplantation of Csf1 null (Csf1-/-) mice bone marrow into Csf1+/+ mice reduced lesions by about 35%, suggesting that CSF1 from hematopoietic cells other than macrophages contributes to atherosclerosis. None of the cell-specific knockouts affected circulating CSF1 levels, and only the smooth muscle cell deletions had any effect on the percentage monocytes in the circulation. Also, Csf1+/- mice did not exhibit significant differences in Ly6Chigh/Ly6Clow monocytes as compared with Csf1+/+. CONCLUSIONS: CSF1 contributes to both macrophage proliferation and survival in lesions. Local CSF1 production by smooth muscle cell and endothelial cell rather than circulating CSF1 is the primary driver of macrophage expansion in atherosclerosis.


Asunto(s)
Apoptosis , Aterosclerosis/metabolismo , Proliferación Celular , Células Endoteliales/metabolismo , Factor Estimulante de Colonias de Macrófagos/metabolismo , Macrófagos/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Aorta/metabolismo , Aorta/patología , Aterosclerosis/genética , Aterosclerosis/patología , Aterosclerosis/prevención & control , Cadherinas/genética , Cadherinas/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/patología , Femenino , Factor Estimulante de Colonias de Macrófagos/deficiencia , Factor Estimulante de Colonias de Macrófagos/genética , Macrófagos/patología , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Receptores de LDL/genética , Receptores de LDL/metabolismo , Transducción de Señal
3.
Acta Pharmacol Sin ; 43(11): 2759-2776, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35379933

RESUMEN

Three major approaches of cancer therapy can be enunciated as delivery of biotherapeutics, tumor image analysis, and immunotherapy. Liposomes, artificial fat bubbles, are long known for their capacity to encapsulate a diverse range of bioactive molecules and release the payload in a sustained, stimuli-responsive manner. They have already been widely explored as a delivery vehicle for therapeutic drugs as well as imaging agents. They are also extensively being used in cancer immunotherapy. On the other hand, exosomes are naturally occurring nanosized extracellular vesicles that serve an important role in cell-cell communication. Importantly, the exosomes also have proven their capability to carry an array of active pharmaceuticals and diagnostic molecules to the tumor cells. Exosomes, being enriched with tumor antigens, have numerous immunomodulatory effects. Much to our intrigue, in recent times, efforts have been directed toward developing smart, bioengineered, exosome-liposome hybrid nanovesicles, which are augmented by the benefits of both vesicular systems. This review attempts to summarize the contemporary developments in the use of exosome and liposome toward cancer diagnosis, therapy, as a vehicle for drug delivery, diagnostic carrier for tumor imaging, and cancer immunotherapy. We shall also briefly reflect upon the recent advancements of the exosome-liposome hybrids in cancer therapy. Finally, we put forward future directions for the use of exosome/liposome and/or hybrid nanocarriers for accurate diagnosis and personalized therapies for cancers.


Asunto(s)
Exosomas , Vesículas Extracelulares , Neoplasias , Humanos , Liposomas , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos
4.
Cancer Immunol Immunother ; 70(8): 2389-2400, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33507343

RESUMEN

Conditional genetically engineered mouse models (GEMMs) of non-small cell lung cancer (NSCLC) harbor common oncogenic driver mutations of the disease, but in contrast to human NSCLC these models possess low tumor mutational burden (TMB). As a result, these models often lack tumor antigens that can elicit host adaptive immune responses, which limits their utility in immunotherapy studies. Here, we establish Kras-mutant murine models of NSCLC bearing the common driver mutations associated with the disease and increased TMB, by in vitro exposure of cell lines derived from GEMMs of NSCLC [KrasG12D (K), KrasG12DTp53-/-(KP), KrasG12DTp53+/-Lkb1-/- (KPL)] to the alkylating agent N-methyl-N-nitrosourea (MNU). Increasing the TMB enhanced host anti-tumor T cell responses and improved anti-PD-1 efficacy in syngeneic models across all genetic backgrounds. However, limited anti-PD-1 efficacy was observed in the KPL cell lines with increased TMB, which possessed a distinct immunosuppressed tumor microenvironment (TME) primarily composed of granulocytic myeloid-derived suppressor cells (G-MDSCs). This KPL phenotype is consistent with findings in human KRAS-mutant NSCLC where LKB1 loss is a driver of primary resistance to PD-1 blockade. In summary, these novel Kras-mutant NSCLC murine models with known driver mutations and increased TMB have distinct TMEs and recapitulate the therapeutic vulnerabilities of human NSCLC. We anticipate that these immunogenic models will facilitate the development of innovative immunotherapies in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , Mutación/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Antígeno B7-H1/genética , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Modelos Animales de Enfermedad , Ratones , Proteínas Serina-Treonina Quinasas/genética , Microambiente Tumoral/genética , Proteína p53 Supresora de Tumor/genética
5.
Int J Mol Sci ; 21(2)2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-31936832

RESUMEN

Angiogenesis is a process of generation of de-novo blood vessels from already existing vasculature. It has a crucial role in different physiological process including wound healing, embryonic development, and tumor growth. The methods by which therapeutic drugs inhibit tumor angiogenesis are termed as anti-angiogenesis cancer therapy. Developments of angiogenic inhibiting drugs have various limitations causing a barrier for successful treatment of cancer, where angiogenesis plays an important role. In this context, investigators developed novel strategies using nanotechnological approaches that have demonstrated inherent antiangiogenic properties or used for the delivery of antiangiogenic agents in a targeted manner. In this present article, we decisively highlight the recent developments of various nanoparticles (NPs) including liposomes, lipid NPs, protein NPs, polymer NPs, inorganic NPs, viral and bio-inspired NPs for potential application in antiangiogenic cancer therapy. Additionally, the clinical perspectives, challenges of nanomedicine, and future perspectives are briefly analyzed.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Nanomedicina/métodos , Neoplasias/tratamiento farmacológico , Animales , Sistemas de Liberación de Medicamentos/métodos , Humanos , Nanopartículas , Neovascularización Patológica/tratamiento farmacológico , Nanomedicina Teranóstica
7.
Dev Biol ; 420(1): 43-59, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27765651

RESUMEN

The visceral musculature of the Drosophila intestine plays important roles in digestion as well as development. Detailed studies investigating the embryonic development of the visceral muscle exist; comparatively little is known about postembryonic development and metamorphosis of this tissue. In this study we have combined the use of specific markers with electron microscopy to follow the formation of the adult visceral musculature and its involvement in gut development during metamorphosis. Unlike the adult somatic musculature, which is derived from a pool of undifferentiated myoblasts, the visceral musculature of the adult is a direct descendant of the larval fibers, as shown by activating a lineage tracing construct in the larval muscle and obtaining labeled visceral fibers in the adult. However, visceral muscles undergo a phase of remodeling that coincides with the metamorphosis of the intestinal epithelium. During the first day following puparium formation, both circular and longitudinal syncytial fibers dedifferentiate, losing their myofibrils and extracellular matrix, and dissociating into mononuclear cells ("secondary myoblasts"). Towards the end of the second day, this process is reversed, and between 48 and 72h after puparium formation, a structurally fully differentiated adult muscle layer has formed. We could not obtain evidence that cells apart from the dedifferentiated larval visceral muscle contributed to the adult muscle, nor does it appear that the number of adult fibers (or nuclei per fiber) is increased over that of the larva by proliferation. In contrast to the musculature, the intestinal epithelium is completely renewed during metamorphosis. The adult midgut epithelium rapidly expands over the larval layer during the first few hours after puparium formation; in case of the hindgut, replacement takes longer, and proceeds by the gradual caudad extension of a proliferating growth zone, the hindgut proliferation zone (HPZ). The subsequent elongation of the hindgut and midgut, as well as the establishment of a population of intestinal stem cells active in the adult midgut and hindgut, requires the presence of the visceral muscle layer, based on the finding that ablation of this layer causes a severe disruption of both processes.


Asunto(s)
Drosophila melanogaster/crecimiento & desarrollo , Intestinos/citología , Intestinos/crecimiento & desarrollo , Metamorfosis Biológica , Morfogénesis , Músculos/metabolismo , Células Madre/metabolismo , Vísceras/crecimiento & desarrollo , Animales , Membrana Basal/metabolismo , Desdiferenciación Celular , Proliferación Celular , Células Clonales , Drosophila melanogaster/ultraestructura , Intestinos/ultraestructura , Larva/crecimiento & desarrollo , Músculos/ultraestructura , Mioblastos/citología , Células Madre/citología , Vísceras/ultraestructura
8.
Am J Physiol Lung Cell Mol Physiol ; 312(2): L186-L195, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27941077

RESUMEN

Bronchopulmonary dysplasia (BPD) is a common complication of premature birth. The histopathology of BPD is characterized by an arrest of alveolarization with fibroblast activation. The Wnt/ß-catenin signaling pathway is important in early lung development. When Wnt signaling is active, phosphorylation of ß-catenin by tyrosine kinases at activating sites, specifically at tyrosine 489 (Y489), correlates with nuclear localization of ß-catenin. We examined fetal lung tissue, lung tissue from term newborns, and lung tissue from infants who died with BPD; we found nuclear ß-catenin phosphorylation at Y489 in epithelial and mesenchymal cells in fetal tissue and BPD tissue, but not in the lungs of term infants. Using a 3D human organoid model, we found increased nuclear localization of ß-catenin phosphorylated at Y489 (p-ß-cateninY489) after exposure to alternating hypoxia and hyperoxia compared with organoids cultured in normoxia. Exogenous stimulation of the canonical Wnt pathway in organoids was sufficient to cause nuclear localization of p-ß-cateninY489 in normoxia and mimicked the pattern of α-smooth muscle actin (α-SMA) expression seen with fibroblastic activation from oxidative stress. Treatment of organoids with a tyrosine kinase inhibitor prior to cyclic hypoxia-hyperoxia inhibited nuclear localization of p-ß-cateninY489 and prevented α-SMA expression by fibroblasts. Posttranslational phosphorylation of ß-catenin is a transient feature of normal lung development. Moreover, the persistence of p-ß-cateninY489 is a durable marker of fibroblast activation in BPD and may play an important role in BPD disease pathobiology.


Asunto(s)
Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Procesamiento Proteico-Postraduccional , beta Catenina/metabolismo , Actinas/metabolismo , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Dasatinib/farmacología , Fibroblastos/efectos de los fármacos , Humanos , Hiperoxia/complicaciones , Hiperoxia/metabolismo , Hiperoxia/patología , Hipoxia/complicaciones , Hipoxia/metabolismo , Hipoxia/patología , Recién Nacido , Pulmón/efectos de los fármacos , Pulmón/crecimiento & desarrollo , Pulmón/metabolismo , Pulmón/patología , Organoides/efectos de los fármacos , Organoides/metabolismo , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos
9.
Am J Physiol Lung Cell Mol Physiol ; 310(10): L889-98, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26968771

RESUMEN

Bronchopulmonary dysplasia (BPD) is a leading complication of premature birth and occurs primarily in infants delivered during the saccular stage of lung development. Histopathology shows decreased alveolarization and a pattern of fibroblast proliferation and differentiation to the myofibroblast phenotype. Little is known about the molecular pathways and cellular mechanisms that define BPD pathophysiology and progression. We have developed a novel three-dimensional human model of the fibroblast activation associated with BPD, and using this model we have identified the Notch pathway as a key driver of fibroblast activation and proliferation in response to changes in oxygen. Fetal lung fibroblasts were cultured on sodium alginate beads to generate lung organoids. After exposure to alternating hypoxia and hyperoxia, the organoids developed a phenotypic response characterized by increased α-smooth muscle actin (α-SMA) expression and other genes known to be upregulated in BPD and also demonstrated increased expression of downstream effectors of the Notch pathway. Inhibition of Notch with a γ-secretase inhibitor prevented the development of the pattern of cellular proliferation and α-SMA expression in our model. Analysis of human autopsy tissue from the lungs of infants who expired with BPD demonstrated evidence of Notch activation within fibrotic areas of the alveolar septae, suggesting that Notch may be a key driver of BPD pathophysiology.


Asunto(s)
Displasia Broncopulmonar/patología , Transducción de Señal , Alginatos/química , Displasia Broncopulmonar/metabolismo , Técnicas de Cultivo de Célula , Hipoxia de la Célula , Células Cultivadas , Medios de Cultivo/química , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Humanos , Receptores Notch/metabolismo
10.
Development ; 140(9): 1903-11, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23571215

RESUMEN

All components of the Drosophila intestinal tract, including the endodermal midgut and ectodermal hindgut/Malpighian tubules, maintain populations of dividing stem cells. In the midgut and hindgut, these stem cells originate from within larger populations of intestinal progenitors that proliferate during the larval stage and form the adult intestine during metamorphosis. The origin of stem cells found in the excretory Malpighian tubules ('renal stem cells') has not been established. In this paper, we investigate the migration patterns of intestinal progenitors that take place during metamorphosis. Our data demonstrate that a subset of adult midgut progenitors (AMPs) move posteriorly to form the adult ureters and, consecutively, the renal stem cells. Inhibiting cell migration by AMP-directed expression of a dominant-negative form of Rac1 protein results in the absence of stem cells in the Malpighian tubules. As the majority of the hindgut progenitor cells migrate posteriorly and differentiate into hindgut enterocytes, a group of the progenitor cells, unexpectedly, invades anteriorly into the midgut territory. Consequently, these progenitor cells differentiate into midgut enterocytes. The midgut determinant GATAe is required for the differentiation of midgut enterocytes derived from hindgut progenitors. Wingless signaling acts to balance the proportion of hindgut progenitors that differentiate as midgut versus hindgut enterocytes. Our findings indicate that a stable boundary between midgut and hindgut/Malpighian tubules is not established during early embryonic development; instead, pluripotent progenitor populations cross in between these organs in both directions, and are able to adopt the fate of the organ in which they come to reside.


Asunto(s)
Movimiento Celular , Drosophila melanogaster/citología , Intestinos/citología , Túbulos de Malpighi/metabolismo , Células Madre/metabolismo , Animales , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Ectodermo/citología , Ectodermo/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Desarrollo Embrionario , Endodermo/citología , Endodermo/metabolismo , Enterocitos/citología , Enterocitos/metabolismo , Factores de Transcripción GATA/genética , Factores de Transcripción GATA/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genotipo , Mucosa Intestinal/metabolismo , Túbulos de Malpighi/citología , Metamorfosis Biológica , Transducción de Señal , Células Madre/citología , Uréter/citología , Uréter/metabolismo , Proteína Wnt1/genética , Proteína Wnt1/metabolismo , Proteínas de Unión al GTP rac/genética , Proteínas de Unión al GTP rac/metabolismo
11.
Cell Rep ; 43(6): 114289, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38833371

RESUMEN

Type I interferon (IFN-I) and IFN-γ foster antitumor immunity by facilitating T cell responses. Paradoxically, IFNs may promote T cell exhaustion by activating immune checkpoints. The downstream regulators of these disparate responses are incompletely understood. Here, we describe how interferon regulatory factor 1 (IRF1) orchestrates these opposing effects of IFNs. IRF1 expression in tumor cells blocks Toll-like receptor- and IFN-I-dependent host antitumor immunity by preventing interferon-stimulated gene (ISG) and effector programs in immune cells. In contrast, expression of IRF1 in the host is required for antitumor immunity. Mechanistically, IRF1 binds distinctly or together with STAT1 at promoters of immunosuppressive but not immunostimulatory ISGs in tumor cells. Overexpression of programmed cell death ligand 1 (PD-L1) in Irf1-/- tumors only partially restores tumor growth, suggesting multifactorial effects of IRF1 on antitumor immunity. Thus, we identify that IRF1 expression in tumor cells opposes host IFN-I- and IRF1-dependent antitumor immunity to facilitate immune escape and tumor growth.


Asunto(s)
Factor 1 Regulador del Interferón , Animales , Humanos , Ratones , Antígeno B7-H1/metabolismo , Línea Celular Tumoral , Inmunidad , Factor 1 Regulador del Interferón/metabolismo , Factor 1 Regulador del Interferón/genética , Ratones Endogámicos C57BL , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/genética , Factor de Transcripción STAT1/metabolismo , Masculino , Femenino
12.
Mol Immunol ; 156: 111-126, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36921486

RESUMEN

COVID-19 is a severe respiratory illness that has emerged as a devasting health problem worldwide. The disease outcome is heterogeneous, which is most likely dependent on the immunity of an individual. Asymptomatic and mildly/moderate symptomatic (non-severe) patients likely develop an effective early immune response and clear the virus. However, severe symptoms dominate due to a failure in the generation of an effective and specific early immune response against SARS-CoV-2. Moreover, a late surge in pathogenic inflammation involves dysregulated innate and adaptive immune responses leading to local and systemic tissue damage and the emergence of severe disease symptoms. In this review, we describe the potential mechanisms of protective and pathogenic immune responses in "mild/moderate" and "severe" symptomatic SARS-CoV-2 infected people, respectively, and discuss the immune components that are currently targeted for therapeutic intervention.


Asunto(s)
COVID-19 , SARS-CoV-2 , SARS-CoV-2/inmunología , COVID-19/genética , COVID-19/inmunología , Humanos , Inmunidad Innata , Inmunidad Adaptativa , Predisposición Genética a la Enfermedad , Células de Memoria Inmunológica , Tratamiento Farmacológico de COVID-19 , Vacuna BCG/inmunología
13.
Adv Biol (Weinh) ; 7(10): e2300036, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37017501

RESUMEN

Epithelial-to-mesenchymal transition (EMT) is responsible for driving metastasis of multiple cancer types including lung cancer. Peroxisome proliferator-activated receptor (PPAR)-γ, a ligand-activated transcription factor, controls expression of variety of genes involved in EMT. Although several synthetic compounds act as potent full agonists for PPAR-γ, their long term application is restricted due to serious adverse effects. Therefore, partial agonists involving reduced and balanced PPAR-γ activity are more effective and valued. A previous study discerned the efficacy of quercetin and its derivatives to attain favorable stabilization with PPAR-γ. Here this work is extended by synthesizing five novel quercetin derivatives (QDs) namely thiosemicarbazone (QUETSC)) and hydrazones (quercetin isonicotinic acid hydrazone (QUEINH), quercetin nicotinic acid hydrazone (QUENH), quercetin 2-furoic hydrazone (QUE2FH), and quercetin salicyl hydrazone (QUESH)) and their effects are analyzed in modulating EMT in lung cancer cell lines via PPAR-γ partial activation. QDs-treated A549 cells diminish cell proliferation strongly at nanomolar concentration compared to NCI-H460 cells. Of the five screened derivatives, QUETSC, QUE2FH, and QUESH exhibit the property of partial activation as compared to the overexpressive level of rosiglitazone. Consistently, these QDs also suppress EMT process by markedly downregulating the levels of mesenchymal markers (Snail, Slug, and zinc finger E-box binding homeobox 1) and concomitant upregulation of epithelial marker (E-cadherin).

14.
J Immunother Cancer ; 11(9)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37730274

RESUMEN

BACKGROUND: Despite recent advances in immunotherapy, many patients with non-small cell lung cancer (NSCLC) do not respond to immune checkpoint inhibitors (ICI). Resistance to ICI may be driven by suboptimal priming of antitumor T lymphocytes due to poor antigen presentation as well as their exclusion and impairment by the immunosuppressive tumor microenvironment (TME). In a recent phase I trial in patients with NSCLC, in situ vaccination (ISV) with dendritic cells engineered to secrete CCL21 (CCL21-DC), a chemokine that facilitates the recruitment of T cells and DC, promoted T lymphocyte tumor infiltration and PD-L1 upregulation. METHODS: Murine models of NSCLC with distinct driver mutations (KrasG12D/P53+/-/Lkb1-/- (KPL); KrasG12D/P53+/- (KP); and KrasG12D (K)) and varying tumor mutational burden were used to evaluate the efficacy of combination therapy with CCL21-DC ISV plus ICI. Comprehensive analyses of longitudinal preclinical samples by flow cytometry, single cell RNA-sequencing (scRNA-seq) and whole-exome sequencing were performed to assess mechanisms of combination therapy. RESULTS: ISV with CCL21-DC sensitized immune-resistant murine NSCLCs to ICI and led to the establishment of tumor-specific immune memory. Immunophenotyping revealed that CCL21-DC obliterated tumor-promoting neutrophils, promoted sustained infiltration of CD8 cytolytic and CD4 Th1 lymphocytes and enriched progenitor T cells in the TME. Addition of ICI to CCL21-DC further enhanced the expansion and effector function of T cells both locally and systemically. Longitudinal evaluation of tumor mutation profiles revealed that CCL21-DC plus ICI induced immunoediting of tumor subclones, consistent with the broadening of tumor-specific T cell responses. CONCLUSIONS: CCL21-DC ISV synergizes with anti-PD-1 to eradicate murine NSCLC. Our data support the clinical application of CCL21-DC ISV in combination with checkpoint inhibition for patients with NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Proteínas Proto-Oncogénicas p21(ras) , Proteína p53 Supresora de Tumor , Neoplasias Pulmonares/tratamiento farmacológico , Inmunoterapia , Microambiente Tumoral , Quimiocina CCL21
15.
Tissue Cell ; 79: 101908, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36084409

RESUMEN

Current tissue engineering strategies in bone repair and regeneration have limitations regarding tissue rejection, insufficient blood supply, and tissue integration. Specific host response results in isolation, degeneration, and subsequent loss of function of the implanted/scaffold biomaterial. Therefore, strategies to increase the interplay between angiogenesis and complex bone tissue formation are required to develop fully functional vascularized bone tissue. Angiogenesis is essential for oxygen/nutrient supply, waste removal, endothelial/stem cell homing, and the release of mitogenic/angiogenic/osteogenic factors. Hence, the challenge lies in understanding the complex interdependence of angiogenesis with neo-bone formation. Therefore, recent bone tissue regeneration strategies have focused on biomaterial development concerning induction of neovascularization and subsequent angiogenesis. Scaffold architecture (macro/micro/nano) scales, culture conditions (3-Dimension, hypoxia, etc), stimuli-dependent delivery of angiofactors, and gene delivery may significantly modulate vascularization in tissue-engineered products. Therefore, the current review discusses the key mechanisms/steps involved in defining the relationship between angiogenic and osteogenic factors. The recent strategies incorporating the above understanding in the development of bone tissue-engineered constructs are also deliberated. Eventually, these strategies may give the potential way forward to develop a bioengineered, vascularized bone tissue construct for implant applications.


Asunto(s)
Neovascularización Fisiológica , Andamios del Tejido , Humanos , Neovascularización Fisiológica/fisiología , Regeneración Ósea/fisiología , Huesos , Ingeniería de Tejidos/métodos , Osteogénesis , Materiales Biocompatibles , Neovascularización Patológica
16.
Drug Discov Today ; 27(3): 890-899, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34774765

RESUMEN

Organoids are 3D stem cell-derived self-organization of cells. Organoid bioengineering helps recreate and tailor their architecture in vitro to generate mini organ-like properties, providing the opportunity to study fundamental cell behavior in heterogeneous populations and as a tool to model various diseases. Nanomaterials (NMs) are becoming indispensable in regenerative medicine and in developing treatment modalities for various diseases. Therefore, organoid-NM interactions are set to gain traction for the development of advanced diagnostics and therapeutics. Here, we discuss the interactions of NMs with distinctive organoid types, organoid matrices, trafficking and cargo delivery, organs-on-a-chip, bioprinting, downstream therapeutic implications, and future approaches.


Asunto(s)
Bioimpresión , Nanoestructuras , Organoides/metabolismo , Medicina Regenerativa , Células Madre
17.
Biophys Rev (Melville) ; 3(4): 041304, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38505516

RESUMEN

Actin, a primary component of the cell cytoskeleton can have multiple isoforms, each of which can have specific properties uniquely suited for their purpose. These monomers are then bound together to form polymeric filaments utilizing adenosine triphosphate hydrolysis as a source of energy. Proteins, such as Arp2/3, VASP, formin, profilin, and cofilin, serve important roles in the polymerization process. These filaments can further be linked to form stress fibers by proteins called actin-binding proteins, such as α-actinin, myosin, fascin, filamin, zyxin, and epsin. These stress fibers are responsible for mechanotransduction, maintaining cell shape, cell motility, and intracellular cargo transport. Cancer metastasis, specifically epithelial mesenchymal transition (EMT), which is one of the key steps of the process, is accompanied by the formation of thick stress fibers through the Rho-associated protein kinase, MAPK/ERK, and Wnt pathways. Recently, with the advent of "field cancerization," pre-malignant cells have also been demonstrated to possess stress fibers and related cytoskeletal features. Analytical methods ranging from western blot and RNA-sequencing to cryo-EM and fluorescent imaging have been employed to understand the structure and dynamics of actin and related proteins including polymerization/depolymerization. More recent methods involve quantifying properties of the actin cytoskeleton from fluorescent images and utilizing them to study biological processes, such as EMT. These image analysis approaches exploit the fact that filaments have a unique structure (curvilinear) compared to the noise or other artifacts to separate them. Line segments are extracted from these filament images that have assigned lengths and orientations. Coupling such methods with statistical analysis has resulted in development of a new reporter for EMT in lung cancer cells as well as their drug responses.

18.
Drug Discov Today ; 27(1): 82-101, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34252612

RESUMEN

WNT/ß-catenin signaling orchestrates various physiological processes, including embryonic development, growth, tissue homeostasis, and regeneration. Abnormal WNT/ß-catenin signaling is associated with various cancers and its inhibition has shown effective antitumor responses. In this review, we discuss the pathway, potential targets for the development of WNT/ß-catenin inhibitors, available inhibitors, and their specific molecular interactions with the target proteins. We also discuss inhibitors that are in clinical trials and describe potential new avenues for therapeutically targeting the WNT/ß-catenin pathway. Furthermore, we introduce emerging strategies, including artificial intelligence (AI)-assisted tools and technology-based actionable approaches, to translate WNT/ß-catenin inhibitors to the clinic for cancer therapy.


Asunto(s)
Productos Biológicos/farmacología , Terapia Molecular Dirigida , Neoplasias , Vía de Señalización Wnt , Diseño de Fármacos , Humanos , Terapia Molecular Dirigida/métodos , Terapia Molecular Dirigida/tendencias , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Vía de Señalización Wnt/fisiología
19.
Biochim Biophys Acta Mol Basis Dis ; 1868(9): 166431, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35533903

RESUMEN

Metastasis consists of hallmark events, including Epithelial-Mesenchymal Transition (EMT), angiogenesis, initiation of inflammatory tumor microenvironment, and malfunctions in apoptosis. Autophagy is known to play a pivotal role in the metastatic process. Autophagy has pulled researchers towards it in recent times because of its dual role in the maintenance of cancer cells. Evidence states that cells undergoing EMT need autophagy in order to survive during migration and dissemination. Additionally, it orchestrates EMT markers in certain cancers. On the other side of the coin, autophagy plays an oncosuppressive role in impeding early metastasis. This review aims to project the interrelationship between autophagy and EMT. Targeting EMT via autophagy as a useful strategy is discussed in this review. Furthermore, for the first time, we have covered the possible reciprocating roles of EMT and autophagy and its consequences in cancer metastasis.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias , Apoptosis , Autofagia , Humanos , Neoplasias/patología , Microambiente Tumoral
20.
Commun Biol ; 5(1): 407, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35501466

RESUMEN

Epithelial-mesenchymal Transition (EMT) is a multi-step process that involves cytoskeletal rearrangement. Here, developing and using an image quantification tool, Statistical Parametrization of Cell Cytoskeleton (SPOCC), we have identified an intermediate EMT state with a specific cytoskeletal signature. We have been able to partition EMT into two steps: (1) initial formation of transverse arcs and dorsal stress fibers and (2) their subsequent conversion to ventral stress fibers with a concurrent alignment of fibers. Using the Orientational Order Parameter (OOP) as a figure of merit, we have been able to track EMT progression in live cells as well as characterize and quantify their cytoskeletal response to drugs. SPOCC has improved throughput and is non-destructive, making it a viable candidate for studying a broad range of biological processes. Further, owing to the increased stiffness (and by inference invasiveness) of the intermediate EMT phenotype compared to mesenchymal cells, our work can be instrumental in aiding the search for future treatment strategies that combat metastasis by specifically targeting the fiber alignment process.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias Pulmonares , Citoesqueleto , Transición Epitelial-Mesenquimal/fisiología , Humanos , Neoplasias Pulmonares/genética , Microtúbulos , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA