Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Mol Pharm ; 21(3): 1466-1478, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38346390

RESUMEN

The interplay between drug and polymer chemistry and its impact on drug release from an amorphous solid dispersion (ASD) is a relatively underexplored area. Herein, the release rates of several drugs of diverse chemistry from hydroxypropyl methylcellulose acetate succinate (HPMCAS)-based ASDs were explored using surface area normalized dissolution. The tendency of the drug to form an insoluble complex with HPMCAS was determined through coprecipitation experiments. The role of pH and the extent of drug ionization were probed to evaluate the role of electrostatic interactions in complex formation. Relationships between the extent of complexation and the drug release rate from an ASD were observed, whereby the drugs could be divided into two groups. Drugs with a low extent of insoluble complex formation with HPMCAS tended to be neutral or anionic and showed reasonable release at pH 6.8 even at higher drug loadings. Cationic drugs formed insoluble complexes with HPMCAS and showed poor release when formulated as an ASD. Thus, and somewhat counterintuitively, a weakly basic drug showed a reduced release rate from an ASD at a bulk solution pH where it was ionized, relative to when unionized. The opposite trend was observed in the absence of polymer for the neat amorphous drug. In conclusion, electrostatic interactions between HPMCAS and lipophilic cationic drugs led to insoluble complex formation, which in turn resulted in ASDs with poor release performance.


Asunto(s)
Metilcelulosa , Metilcelulosa/análogos & derivados , Polímeros , Polímeros/química , Solubilidad , Liberación de Fármacos , Metilcelulosa/química
2.
Mol Pharm ; 20(11): 5714-5727, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37751517

RESUMEN

Hydroxypropyl methylcellulose acetate succinate (HPMCAS) is a weakly acidic polymer that is widely used in the formulation of amorphous solid dispersions (ASDs). While the pH-dependent solubility of HPMCAS is widely recognized, the role of other solution properties, including buffer capacity, is less well understood in the context of ASD dissolution. The goal of this study was to elucidate the rate-limiting steps for drug and HPMCAS release from ASDs formulated with two poorly water soluble model drugs, indomethacin and indomethacin methyl ester. The surface area normalized release rate of the drug and/or polymer in a variety of media was determined. The HPMCAS gel layer apparent pH was determined by incorporating pH sensitive dyes into the polymer matrix. Water uptake extent and rate into the ASDs were measured gravimetrically. For neat HPMCAS, the rate-limiting step for polymer dissolution was observed to be the polymer solubility at the polymer-solution interface. This, in turn, was impacted by the gel layer pH which was found to be substantially lower than the bulk solution pH, varying with medium buffer capacity. For the ASDs, the HPMCAS release rate was found to control the drug release rate. However, both drugs reduced the polymer release rate with indomethacin methyl ester having a larger impact. In low buffer capacity media, the presence of the drug had less impact on release rates when compared to observations in higher strength buffers, suggesting changes in the rate-limiting steps for HPMCAS dissolution. The observations made in this study can contribute to the fundamental understanding of acidic polymer dissolution in the presence and absence of a molecularly dispersed lipophilic drug and will help aid in the design of more in vivo relevant release testing experiments.


Asunto(s)
Metilcelulosa , Polímeros , Solubilidad , Liberación de Fármacos , Metilcelulosa/química , Polímeros/química , Indometacina , Ésteres , Agua
3.
AAPS PharmSciTech ; 24(1): 22, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36536237

RESUMEN

Due to their constituent powders, the materials of advanced compressed oral solid dosage (OSD) forms are micro-composites and strongly visco-elastic at macro- and micro-length scales. The disintegration, drug release, and mechanical strength of OSD forms depend on its micro-texture (such as porosity) and micro-scale physical/mechanical properties. In the current work, an algorithmic ultrasonic characterization framework for extracting the micro-visco-elastic properties of OSD materials is presented, and its applicability is demonstrated with a model material. The proposed approach is based on the effect of visco-elasticity and granularity on the frequency-dependent attenuation of an ultrasonic wave pulse in a composite (granular) and viscous medium. In modeling the material, a two-parameter Zener model for visco-elasticity and a scattering attenuation mechanism based on Rayleigh scattering for long-wave approximation are employed. A novel linear technique for de-coupling the effects of micro-visco-elasticity and scattering on attenuation and dispersion is developed and demonstrated. The apparent Young's modulus, stress, and strain relaxation time constants of the medium at micro-scale are extracted and reported. Based on this modeling and analysis framework, a set of computational algorithms has been developed and demonstrated with experimental data, and its practical utility in pharmaceutical manufacturing and real-time release testing of tablets is discussed.


Asunto(s)
Ondas Ultrasónicas , Ultrasonido , Elasticidad , Módulo de Elasticidad , Comprimidos
4.
Pharm Dev Technol ; 26(2): 150-156, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33267700

RESUMEN

Magnesium stearate (MgSt) is a widely used pharmaceutical lubricant in tablet manufacturing. However, batch-to-batch variability in hydrate form and surface area can lead to inconsistency in tablet performance. In this work, several unique MgSt samples were studied: traditional monohydrate samples with high surface area, dihydrate forms with high and low surface area, and disordered forms with low and medium water content. The effects of solid-state form and particle properties on lubrication efficiency, tabletability and dissolution were studied for tablets in a model direct compression formulation. It was found that the monohydrate and dihydrate forms had good lubrication efficiency compared to the disordered form, while the disordered form had the best tabletability. The dissolution rate correlated with surface area, where slower dissolution rates corresponded with higher MgSt surface areas. The dihydrate sample with lower surface area had the best performance for this model formulation, in terms of lubrication efficiency, tabletability and dissolution. Overall, it is concluded that the choice of the most appropriate grade of MgSt for a particular formulation depends on a comprehensive evaluation of the impact of MgSt properties on lubrication efficiency, tabletability and dissolution.


Asunto(s)
Excipientes/química , Lubricantes/química , Ácidos Esteáricos/química , Química Farmacéutica/métodos , Liberación de Fármacos , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/química , Solubilidad , Comprimidos , Agua/química
5.
Mol Pharm ; 17(4): 1387-1396, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32134675

RESUMEN

Punch-sticking during tablet compression is a common problem for many active pharmaceutical ingredients (APIs), which renders tablet formulation development challenging. Herein, we demonstrate that the punch-sticking propensity of a highly sticky API, celecoxib (CEL), can be effectively reduced by spherical crystallization enabled by a polymer assisted quasi-emulsion solvent diffusion (QESD) process. Among three commonly used pharmaceutical polymers, poly(vinylpyrrolidone) (PVP), hydroxypropyl cellulose (HPC), and hydroxypropyl methylcellulose (HPMC), HPMC was the most effective in stabilizing the transient emulsion during QESD and retarding the coalescence of emulsion droplets and the initiation of CEL crystallization. These observations may arise from stronger intermolecular interactions between HPMC and CEL, consistent with solution 1H NMR analyses. SEM and X-ray photoelectron spectroscopy confirmed the presence of a thin layer of HPMC on the surfaces of spherical particles. Thus, the sticking propensity was significantly reduced because the HPMC coating prevents direct contact between CEL and the punch tip during tablet compression.


Asunto(s)
Celecoxib/química , Emulsiones/química , Polímeros/química , Solventes/química , Cristalización/métodos , Difusión , Composición de Medicamentos/métodos , Derivados de la Hipromelosa/química , Comprimidos/química
6.
Mol Pharm ; 17(4): 1148-1158, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32058728

RESUMEN

Punch sticking during tablet manufacturing is a common problem facing the pharmaceutical industry. Using several model compounds, effects of crystal size and shape of active pharmaceutical ingredients (API) on punch sticking propensity were systematically investigated in this work to provide molecular insights into the punch-sticking phenomenon. In contrast to the common belief that smaller API particles aggravate punch sticking, results show that particle size reduction can either reduce or enhance API punch sticking, depending on the complex interplay among the particle surface area, plasticity, cohesive strength, and specific surface functional groups. Therefore, other factors, such as crystal mechanical properties, surface chemistry of crystal facets exposed to the punch face, and choice of excipients in a formulation, should be considered for a more reliable prediction of the initiation and progression of punch sticking. The exposure of strong electronegative groups to the punch face facilitates the onset of sticking, while higher plasticity and cohesive strength aggravate sticking.


Asunto(s)
Preparaciones Farmacéuticas/química , Polvos/química , Comprimidos/química , Adhesividad , Química Farmacéutica/métodos , Excipientes/química , Tamaño de la Partícula , Presión , Propiedades de Superficie
7.
AAPS PharmSciTech ; 21(7): 240, 2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32839891

RESUMEN

This study investigated the effect of binder level on the physicochemical changes and tabletability of acetaminophen (APAP)-hydroxypropyl cellulose (HPC) granulated using twin-screw melt granulation. Even at 5% HPC level, the tablet tensile strength achieved up to 3.5 MPa. A minimum of 10% HPC was required for the process robustness. However, 20% HPC led to tabletability loss, attributable to the high mechanical strength of APAP granules. The over-granulated APAP granules had thick connected HPC scaffold and low porosity. Consequently, these granules were so strong that they underwent a lower degree of fracture under compression and higher elastic recovery during decompression. HPC was enriched on the surface of APAP extrudates at all HPC levels. Amorphous APAP was also observed on the extrudate surface at 20% HPC level, and it recrystallized within 24 h storage. To achieve a robust process and optimal improvement in APAP tabletability, the preferred HPC level was 10 to 15%.


Asunto(s)
Acetaminofén/química , Celulosa/análogos & derivados , Celulosa/análisis , Composición de Medicamentos , Excipientes , Tamaño de la Partícula , Porosidad , Comprimidos , Resistencia a la Tracción
8.
Mol Pharm ; 16(6): 2700-2707, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-30973740

RESUMEN

Powder adhesion or sticking onto punches is one of the outstanding issues in pharmaceutical tablet manufacturing. We show in this work that, at comparable particle sizes, the acesulfame potassium exhibited pronouncedly reduced propensity to punch sticking than acesulfame. Detailed analyses revealed strong correlation between sticking propensity and crystal mechanical properties and surface chemistry. The free acid was highly plastic with high cohesive strength, while the salt form was brittle. During compaction, surfaces of acesulfame in contact with the punch face are abundant in electronegative functional groups, while those of the salt consist of mainly hydrophobic groups. Thus, acesulfame underwent stronger interactions with the electron-deficient punch. Consequently, the strikingly different onset and severity of sticking propensity between the two solid forms of acesulfame could be clearly explained based on their different crystal mechanical properties and surface characteristics. By providing molecular insight into the outstanding problem of punch sticking in tablet manufacturing, this work expands the list of pharmaceutical applications of crystal engineering.


Asunto(s)
Tiazinas/química , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Teóricos , Espectroscopía de Fotoelectrones , Propiedades de Superficie , Difracción de Rayos X
9.
J Chem Phys ; 151(19): 195101, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31757137

RESUMEN

The solid-state photochemically induced dynamic nuclear polarization (photo-CIDNP) effect has been studied in a quinone-depleted uniformly (u-)13C,15N-labeled photosynthetic reaction center (RC) protein from purple bacterium Rhodobacter (R.) sphaeroides wild type (WT). As a method for investigation, solid-state 15N NMR under magic-angle spinning (MAS) is applied under both continuous illumination (steady state) and nanosecond-laser flashes (time-resolved). While all previous 15N photo-CIDNP MAS NMR studies on the purple bacterial RC used the carotenoid-less mutant R26, this is the first using WT samples. The absence of further photo-CIDNP mechanisms (compared to R26) and various couplings (compared to 13C NMR experiments on 13C-labeled samples) allows the simplification of the spin-system. We report 15N signals of the three cofactors forming the spin-correlated radical pair (SCRP) and, based on density-functional theory calculations, their assignment. The simulation of photo-CIDNP intensities and time-resolved 15N photo-CIDNP MAS NMR data matches well to the frame of the mechanistic interpretation. Three spin-chemical processes, namely, radical pair mechanism, three spin mixing, and differential decay, generate emissive (negative) 15N polarization in the singlet decay channel and absorptive (positive) polarization in the triplet decay channel of the SCRP. The absorptive 15N polarization of the triplet decay channel is transiently obscured during the lifetime of the triplet state of the carotenoid (3Car); therefore, the observed 15N signals are strongly emissive. Upon decay of 3Car, the transiently obscured polarization becomes visible by reducing the excess of emissive polarization. After the decline of 3Car, the remaining nuclear hyperpolarization decays with nuclear T1 relaxation kinetics.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Rhodobacter sphaeroides/metabolismo , Modelos Moleculares , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Conformación Proteica
10.
Pharm Res ; 35(6): 113, 2018 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-29603027

RESUMEN

PURPOSE: To investigate how excipient matrix affects punch sticking propensity of active pharmaceutical ingredients (API), with the focus on the effect of bonding interactions between API-API (F2) and API-excipient (F3). METHOD: Sticking kinetics of direct compression formulations, consisting of 20% of celecoxib (CEL) or ibuprofen (IBN) in different excipient matrices, i.e., microcrystalline cellulose (Avicel PH102 and Avicel PH105 dry coated with nano-sized silica (PH105(n)), hypromellose (K15 M), and a 3:1 mixture between starch and Avicel PH102 (S3P1), was assessed using a removable punch tip on a compaction simulator. The amount of material transferred to punch was determined gravimetrically every 10 compressions up to 50 compactions. RESULTS: CEL exhibited higher F2 than IBN. CEL also exhibited more sticking under otherwise identical compaction conditions in the same excipient matrix. Among different excipient matrices, sticking propensity of both APIs followed the ascending order: PH105(n) < PH102 < K15 M < S3P1. This order was exactly opposite to the order of F3, confirming that greater bonding strength of the formulation favors lower sticking propensity of a given API. CONCLUSION: For an API prone to punch sticking, judicious use of excipients to render higher tablet mechanical strength can mitigate severity of punch sticking.


Asunto(s)
Composición de Medicamentos/métodos , Excipientes/química , Comprimidos/química , Adhesividad , Celecoxib/química , Composición de Medicamentos/instrumentación , Ibuprofeno/química , Polvos
11.
Pharm Res ; 34(12): 2901-2909, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28983779

RESUMEN

PURPOSE: To systematically assess the dependence of friability on tablet mechanical properties, compaction pressure, and tablet porosity. METHODS: Several common excipients and their mixtures exhibiting diverse mechanical properties were analyzed. Tablet elastic modulus, hardness, brittleness, porosity, and tensile strength were determined using standard techniques and then were correlated to tablet friability both individually and as a group to derive a universal model. RESULTS: Viscoelastic starch exhibits the highest friability followed by brittle excipients (mannitol, DCPA, and LM) and then ductile excipients (HPC and MCC). A reasonably accurate model for predicting pharmaceutically relevant range of friability, up to 3%, of binary mixtures is presented based on friability of individual components. In addition, a multivariate model between friability and different mechanical parameters was developed, based on which the weight loss propensity of tablets may be predicted. CONCLUSIONS: The experimental findings and predictive model are useful for expedited development and optimization of tablet formulation using a minimum amount of API.


Asunto(s)
Composición de Medicamentos/métodos , Excipientes/química , Comprimidos/química , Celulosa/química , Química Farmacéutica/métodos , Módulo de Elasticidad , Dureza , Manitol/química , Modelos Químicos , Porosidad , Resistencia a la Tracción
12.
Int J Pharm ; 660: 124366, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38901541

RESUMEN

This research investigates the modeling of the pharmaceutical roller compaction process, focusing on the application of the Johanson model and the impact of varying roll speeds from 1 to 15 RPM on predictive accuracy of ribbon solid fraction. The classical Johanson's model was integrated with a dwell time parameter leading to an expression of a floating correction factor as a function of roll speed. Through systematic analysis of the effect of different roll speeds on the solid fraction of ribbons composed of microcrystalline cellulose, lactose, and their blends, corrective adjustment to the Johanson model was found to depend on both roll speed and formulation composition. Interestingly, the correction factor demonstrated excellent correlation with the blend's mechanical properties, namely yield stress (Py) and elastic modulus (E0), representative of the deformability of the powder. Validated by a multicomponent drug formulation with ±0.4-1.3 % differences, the findings underscore the utility of this modified mechanistic approach for precise prediction of ribbon solid fraction when Py or E0 is known for a given blend. Hence, this work advances the field by offering early insights for more accurate and controllable roller compaction operations during late-stage pharmaceutical manufacturing.

13.
Int J Pharm ; 655: 124049, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38537921

RESUMEN

In in-process quality monitoring for Continuous Manufacturing (CM) and Critical Quality Attributes (CQA) assessment for Real-time Release (RTR) testing, ultrasonic characterization is a critical technology for its direct, non-invasive, rapid, and cost-effective nature. In quality evaluation with ultrasound, relating a pharmaceutical tablet's ultrasonic response to its defect state and quality parameters is essential. However, ultrasonic CQA characterization requires a robust mathematical model, which cannot be obtained with traditional first principles-based modeling approaches. Machine Learning (ML) using experimental data is emerging as a critical analytical tool for overcoming such modeling challenges. In this work, a novel Deep Neural Network-based ML-driven Non-Destructive Evaluation (ML-NDE) modeling framework is developed, and its effectiveness for extracting and predicting three CQAs, namely defect states, compression force levels, and amounts of disintegrant, is demonstrated. Using a robotic tablet handling experimental rig, each attribute's distinct waveform dataset was acquired and utilized for training, validating, and testing the respective ML models. This study details an advanced algorithmic quality assessment framework for pharmaceutical CM in which automated RTR testing is expected to be critical in developing cost-effective in-process real-time monitoring systems. The presented ML-NDE approach has demonstrated its effectiveness through evaluations with separate (unused) test datasets.


Asunto(s)
Tecnología Farmacéutica , Ultrasonido , Fenómenos Mecánicos , Presión , Comprimidos
14.
J Fluoresc ; 23(2): 283-91, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23229847

RESUMEN

The photophysical properties of chlorin e6 (Ce6) in twelve different protic, aprotic and non-polar solvents were investigated using ultraviolet-visible and fluorescence spectroscopic methods. Solvatochromic effects were determined by the changes in quantum yield, Stokes shift, fluorescence half-life and excited state dipole moments of Ce6 in the different solvents. The absorption shifts observed in different solvents were further analyzed using the Kamlet-Abboud-Taft model and the nature of solute-solvent interactions between Ce6 and different protic and aprotic solvents was elucidated. The quantum yields were found highest in protic solvents (except water), followed by aprotic and non-polar solvents. Solvent polarity parameters showed a linear increasing trend with Stokes shift and fluorescence half-life, which indicated the presence of Ce6-solvent interaction. Using the Kamlet-Abboud-Taft model, a direct correlation between the solvent polarity parameters and absorption shift was observed, which substantiated the existence of Ce6-solvent interaction by hydrogen bond formation. The excited state dipole moments in specific protic and aprotic solvents were found to be higher than the ground state dipole moments, implying a more polar nature of Ce6 during excited state transition.


Asunto(s)
Fotoquimioterapia , Porfirinas/análisis , Solventes/química , Clorofilidas , Semivida , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta
15.
J Fluoresc ; 23(5): 1065-76, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23677495

RESUMEN

Molecular aggregation in aqueous media is one of the factors which largely affects the efficacy of photosensitizers in photodynamic therapy. Chlorin e6 (Ce6) in aggregated form is known to exhibit markedly reduced therapeutic effects. In the present study, aggregate to monomer conversion of Ce6 was investigated as a function of pH and polyvinylpyrrolidone (PVP) concentration by simple absorption and fluorescence spectroscopic techniques. Aggregation of Ce6 was observed in the pH range of 2 to 6 as indicated by changes in UV-vis absorption spectra, fluorescence emission spectra and relative quantum yield. Novel chemometric approach was considered for determining the relative monomerization efficiency of different grades of PVP. The chemometric analysis and binding constant study both strongly revealed that the Ce6-PVP complex was more efficiently formed with PVP of the lowest molecular weight (K17). Thermodynamic parameters, such as the heat of entropy and enthalpy, showed that complex formation was largely attributed to hydrophobic interaction between Ce6 and PVP. This was found to be consistent with the results obtained from molecular simulation study.


Asunto(s)
Simulación de Dinámica Molecular , Porfirinas/química , Povidona/química , Termodinámica , Clorofilidas , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Conformación Molecular , Peso Molecular , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta
16.
Int J Pharm ; 642: 123156, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37348575

RESUMEN

The robustness of tablet manufacturability largely depends on compressibility behavior of a powder. The compressibility assessment is traditionally conducted on cylindrical flat-faced compacts in contrast to the fact that marketed tablets are majorly produced using non-flat faced or shaped toolings. The present work demonstrates the feasibility of quantifying average compressibility on shaped toolings through a proof-of-concept study by investigating the central band portion and the entire volume of the tablet, which led to several notable findings. Firstly, the yield stress (deformability) was found independent of type of tooling for a given powder in the in-die condition, but for the same tooling it conversely spanned over a wide range in the out-die condition due to characteristic elastic recovery. Secondly, the yield stress parameter correlated with the change in band volume of the shaped tablet with applied compaction pressure, thereby establishing an orthogonal approach to assess compressibility on non-flat faced toolings. The study emphasizes that tooling characteristics may affect compressibility and tablet robustness of a same powder, which should be practiced cautiously in drug product manufacturing.


Asunto(s)
Química Farmacéutica , Polvos , Comprimidos , Composición de Medicamentos
17.
Int J Pharm ; 641: 123041, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37201765

RESUMEN

The development of a high quality tablet of Celecoxib (CEL) is challenged by poor dissolution, poor flowability, and high punch sticking propensity of CEL. In this work, we demonstrate a particle engineering approach, by loading a solution of CEL in an organic solvent into a mesoporous carrier to form a coprocessed composite, to enable the development of tablet formulations up to 40% (w/w) of CEL loading with excellent flowability and tabletability, negligible punch sticking propensity, and a 3-fold increase in in vitro dissolution compared to a standard formulation of crystalline CEL. CEL is amorphous in the drug-carrier composite and remained physically stable after 6 months under accelerated stability conditions when the CEL loading in the composite was ≤ 20% (w/w). However, crystallization of CEL to different extents from the composites was observed under the same stability condition when CEL loading was 30-50% (w/w). The success with CEL encourages broader exploration of this particle engineering approach in enabling direct compression tablet formulations for other challenging active pharmaceutical ingredients.


Asunto(s)
Portadores de Fármacos , Excipientes , Celecoxib , Composición de Medicamentos , Solubilidad , Comprimidos/química , Portadores de Fármacos/química , Excipientes/química
18.
Int J Pharm ; 646: 123477, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37797783

RESUMEN

A compressed pharmaceutical oral solid dosage (OSD) form is a strongly micro-viscoelastic material composite arranged as a network of agglomerated particles due to its constituent powders and their bonding and fractural mechanical properties. An OSD product's Critical Quality Attributes, such as disintegration, drug release (dissolution) profile, and structural strength ("hardness"), are influenced by its micro-scale properties. Ultrasonic evaluation is direct, non-destructive, rapid, and cost-effective. However, for practical process control applications, the simultaneous extraction of the micro-viscoelastic and scattering properties from a tablet's ultrasonic response requires a unique solution to a challenging inverse mathematical wave propagation problem. While the spatial progression of a pulse traveling in a composite medium with known micro-scale properties is a straightforward computational task when its dispersion relation is known, extracting such properties from the experimentally acquired waveforms is often non-trivial. In this work, a novel Machine Learning (ML)-based micro-property extraction technique directly from waveforms, based on Multi-Output Regression models and Neural Networks, is introduced and demonstrated. Synthetic waveforms with a given set of micro-properties of virtual tablets are computationally generated to train, validate, and test the developed ML models for their effectiveness in the inverse problem of recovering specified micro-scale properties. The effectiveness of these ML models is then tested and demonstrated for a set of physical OSD tablets. The micro-viscoelastic and micro-structural properties of physical tablets with known properties have been extracted through experimentally acquired waveforms to exhibit their consistency with the generated ML-based attenuation results.


Asunto(s)
Tecnología Farmacéutica , Ultrasonido , Tecnología Farmacéutica/métodos , Composición de Medicamentos/métodos , Comprimidos/química , Presión
19.
Int J Pharm X ; 6: 100188, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37387778

RESUMEN

In this study, the torque profiles of heterogeneous granulation formulations with varying powder properties in terms of particle size, solubility, deformability, and wettability, were studied, and the feasibility of identifying the end-point of the granulation process for each formulation based on the torque profiles was evaluated. Dynamic median particle size (d50) and porosity were correlated to the torque measurements to understand the relationship between torque and granule properties, and to validate distinction between different granulation stages based on the torque profiles made in previous studies. Generally, the torque curves obtained from the different granulation runs in this experimental design could be categorized into two different types of torque profiles. The primary factor influencing the likelihood of producing each profile was the binder type used in the formulation. A lower viscosity, higher solubility binder resulted in a type 1 profile. Other contributing factors that affected the torque profiles include API type and impeller speed. Material properties such as the deformability and solubility of the blend formulation and the binder were identified as important factors affecting both granule growth and the type of torque profiles observed. By correlating dynamic granule properties with torque values, it was possible to determine the granulation end-point based on a pre-determined target median particle size (d50) range which corresponded to specific markers identified in the torque profiles. In type 1 torque profiles, the end-point markers corresponded to the plateau phase, whereas in type 2 torque profiles the markers were indicated by the inflection point where the slope gradient changes. Additionally, we proposed an alternative method of identification by using the first derivative of the torque values, which facilitates an easier identification of the system approaching the end-point. Overall, this study identified the effects of different variations in formulation parameters on torque profiles and granule properties and implemented an improved method of identification of granulation end-point that is not dependent on the different types of torque profiles observed.

20.
Int J Pharm ; 624: 122054, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35902058

RESUMEN

Indentation hardness, H, is an important mechanical property that quantifies the resistance to deformation by a material. For pharmaceutical powders, H can be determined using a macroindentation method, provided they can form intact tablets suitable for testing. This work demonstrates a method for determining the hardness of problematic materials that cannot form suitable tablets for macroindentation. The method entails predicting the hardness of a given powder at zero porosity (H0) from those of microcrystalline cellulose and its binary mixture with the test compound using a power law mixing rule based on weight fraction. This method was found suitable for 13 binary mixtures. In addition, the H0 values derived by this method could capture changes due to different particle sizes of sucrose and sodium chloride. Furthermore, the derived H0 reasonably agreed with the single crystal indentation hardness of a set of 16 crystals when accounting for the effect of indentation condition and structural anisotropy. The mixture method thus extends the use of macroindentation for predicting indentation hardness of powders that cannot form intact tablets and, hence, their plasticity.


Asunto(s)
Excipientes , Composición de Medicamentos/métodos , Excipientes/química , Dureza , Polvos , Comprimidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA