RESUMEN
Multifunctional bioplastics have been prepared by amorphous reassembly of cellulose, hemicelluloses (xylan), and hydrolyzed lignin. For this, the biopolymers were dissolved in a trifluoroacetic acid-trifluoroacetic anhydride mixture and blended in different percentages, simulating those found in natural woods. Free-standing and flexible films were obtained after the complete evaporation of the solvents. By varying xylan and hydrolyzed lignin contents, the physical properties were easily tuned. In particular, higher proportions of hydrolyzed lignin improved hydrodynamics, oxygen barrier, grease resistance, antioxidant, and antibacterial properties, whereas a higher xylan content was related to more ductile mechanical behavior, comparable to synthetic and bio-based polymers commonly used for packaging applications. In addition, these bioplastics showed high biodegradation rates in seawater. Such new polymeric materials are presented as alternatives to common man-made petroleum-based plastics used for food packaging.
Asunto(s)
Materiales Biocompatibles/química , Celulosa/química , Lignina/química , Plásticos/química , Madera/química , Xilanos/química , Antiinfecciosos/administración & dosificación , Antiinfecciosos/química , Antioxidantes/administración & dosificación , Antioxidantes/química , Materiales Biocompatibles/administración & dosificación , Celulosa/administración & dosificación , Embalaje de Alimentos/métodos , Hidrólisis , Lignina/administración & dosificación , Xilanos/administración & dosificaciónRESUMEN
Waterborne polyurethane dispersions can be designed to generate highly functional and environmentally friendly polymer systems. The use of water as the main dispersion medium is very advantageous for the environment and the introduction of linear and aliphatic polyols such as polyether and polyesters in the formulations can make them highly biocompatible and susceptible to biodegradation. In this study, we fabricated biodegradable, flexible and transparent plastic films by hybridizing a waterborne aliphatic polyester polyurethane (PU) suspension with polyvinylpyrrolidone (PVP) using mechanical homogenization in water. Films were cast containing different concentrations of PVP. The hybrids containing 50 wt.% PVP (PU/PVP_50/50) were hydrophobic, stretchable, highly transparent and ductile beyond 100% strain compared to highly brittle PVP. The mechanical properties of the PU/PVP_50/50 film remained stable after repeated immersion wet-dry cycles, each lasting 2 days, and the dried films recovered their mechanical properties after each cycle. Based on a 28-day biochemical oxygen demand (BOD) test, the hybrid PU/PVP_50/50 film underwent extensive biodegradation. This simple but effective process can be very suitable in producing biodegradable ductile films with very good transparency that can serve a number of applications such as agricultural mulches, food and pharmaceutical packaging and biomedical field.
RESUMEN
Bio-based and biodegradable packaging combined with chemical sensors and indicators has attracted great attention as they can provide protection combined with information on the actual freshness of foodstuffs. In this study, we present an effective, biodegradable, mostly bio-sourced material ideal for sustainable packaging that can also be used as a smart indicator of ammonia (NH3) vapor and food spoilage. The developed material comprises a blend of poly(lactic acid) (PLA) and poly(propylene carbonate) (PPC) loaded with curcumin (CCM), which is fabricated via the scalable techniques of melt extrusion and compression molding. Due to the structural similarity of PLA and PPC, they exhibited good compatibility and formed hydrogen bonds within their blends, as proven by Fourier transform infrared (FTIR) and X-ray diffraction (XRD). Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis confirmed that the blends were thermally stable at the used processing temperature (180 °C) with minimal crystallinity. The rheological and mechanical properties of the PLA/PPC blends were easily tuned by changing the ratio of the biopolymers. Supplementing the PLA/PCC samples with CCM resulted in efficient absorption of UV radiation, yet the transparency of the films was preserved (T700 â¼ 68-84%). The investigation of CCM extract in ethanol with the DPPH⢠assay demonstrated that the samples could also provide effective antioxidant action, due to the tunable release of the CCM. Analyses for water vapor and oxygen permeability showed that the PPC improved the barrier properties of the PLA/PPC blends, while the presence of CCM did not hinder barrier performance. The capacity for real-time detection of NH3 vapor was quantified using the CIELab color space analysis. A change in color of the sample from a yellowish shade to red was observed by the naked eye. Finally, a film of PLA/PPC/CCM was successfully applied as a sticker indicator to monitor the spoilage of shrimps over time, demonstrating an evident color change from yellow to light orange, particularly for the PPC-containing blend. The developed system, therefore, has the potential to serve as a cost-effective, easy-to-use, nondestructive, smart indicator for food packaging, as well as a means for NH3 gas monitoring in industrial and environmental applications.
Asunto(s)
Curcumina , Rastreo Diferencial de Calorimetría , Embalaje de Alimentos/métodos , Poliésteres/química , VaporRESUMEN
The industrial processing of avocados annually generates more than 1.2 million tons of avocado peels (APs) and avocado seeds (ASs) that have great potential in the production of active bioplastics, although they have never been considered for this aim until now. Separately, the APs and ASs, as well as a combination of avocado peels and seeds (APSs), were evaluated here for the first time for the preparation of antioxidant films, with application in food packaging. Films were prepared by casting, after their processing by three different methods: (1) hydrolysis in acid media, (2) hydrolysis followed by plasticization, and (3) hydrolysis and plasticization followed by blending with pectin polymers in different proportions (25 and 50 wt %). The results indicate that the combination of hydrolysis, plasticization, and pectin blending is essential to obtain materials with competitive mechanical properties, optical clarity, excellent oxygen barrier properties, high antioxidant activity, biodegradability, and migration of components in TENAX suitable for food contact applications. In addition, the materials prepared with APSs are advantageous from the point of view of the industrial waste valorization, since the entire avocado wastes are used for the production of bioplastics, avoiding further separation processes for their valorization.
Asunto(s)
Embalaje de Alimentos/métodos , Persea , Semillas/metabolismo , Antioxidantes/química , Pectinas/química , Persea/química , Persea/metabolismoRESUMEN
The accelerated increase in freshwater demand, particularly among populations displaced in remote locations where conventional water sources and the infrastructure required to produce potable water may be completely absent, highlights the urgent need in creating additional freshwater supply from untapped alternative sources via energy-efficient solutions. Herein, we present a hydrophilic and self-floating photothermal foam that can generate potable water from seawater and atmospheric moisture via solar-driven evaporation at its interface. Specifically, the foam shows an excellent solar-evaporation rate of 1.89 kg m-2 h-1 with a solar-to-vapor conversion efficiency of 92.7% under 1-Sun illumination. The collected water is shown to be suitable for potable use because when synthetic seawater samples (3.5 wt %) are used, the foam is able to cause at least 99.99% of salinity reduction. The foam can also be repeatedly used in multiple hydration-dehydration cycles, consisting of moisture absorption or water collection, followed by solar-driven evaporation; in each cycle, 1 g of the foam can harvest 250-1770 mg of water. To the best of our knowledge, this is the first report of a material that integrates all the desirable properties for solar evaporation, water collection, and atmospheric-water harvesting. The lightweight and versatility of the foam suggest that the developed foams can be a potent solution for water efficiency, especially for off-grid situations.
RESUMEN
Sustainable biocomposites have been developed by solvent mixing of poly(lactic acid) (PLA) with a fine powder of cocoa bean shells (CBS) and subsequent solution casting, using different concentrations of CBS. The inclusion of CBS recovers the crystallinity of the initially amorphous PLA films and improves the physical properties of the composites. Young's modulus increases by 80% with 75 wt % CBS inclusion; however, the composites maintain plasticity. The barrier properties of the hydrophobic composites were characterized, and the water vapor permeability is found to be ca. 3.5 × 10-5 g·m-1·day-1·Pa-1 and independent of the CBS content. On the other hand, oxygen permeability is found to depend on the CBS content, with values as low as 10 000 mL·µm·m-2·day-1·atm-1 for 50 wt % CBS. Furthermore, CBS confer antioxidant activity to the composites and improve swelling properties rendering the composites biodegradable in aquatic environments, reaching 70% of the maximum biodegradability in just 30 days. The above, in conjunction with the low level of migration measured in food simulant, make the PLA/CBS composites a highly promising material for active food packaging.
RESUMEN
Poly(3-hydroxybutyrate), a green polymer originating from prokaryotic microbes, has been used to prepare composites with graphene nanoplatelets (GnP) at different concentrations. The films were fabricated by drop-casting and were hot-pressed at a temperature lower than their melting point to provide the molecular chains enough energy to reorientate while avoiding melting and degradation. It was found that hot-pressing increases crystallinity and improves mechanical properties. The Young's modulus increased from 1.2 to 1.6 GPa for the poly(3-hydroxybutyrate) (P(3HB)) films and from 0.5 to 2.2 GPa for the 15 wt % P(3HB)/GnP composites. Electrical resistivity decreases enormously with GnP concentration and hot-pressing, reaching 6 Ω sq-1 for the hot-pressed 30 wt % P(3HB)/GnP composite. Finally, the hot-pressed P(3HB) samples exhibit remarkable oxygen barrier properties, with oxygen permeability reaching 2800 mL µm m-2 day-1, which becomes 895 mL µm m-2 day-1 when 15% GnP is added to the biopolymer matrix, one of the lowest values known for biopolymers and biocomposites. We propose that these biocomposites are used for elastic packaging and electronics.
RESUMEN
Poly(furfuryl alcohol) (PFA) is a bioresin synthesized from furfuryl alcohol (FA) that is derived from renewable saccharide-rich biomass. In this study, we compounded this bioresin with polycaprolactone (PCL) for the first time, introducing new functional polymer blends. Although PCL is biodegradable, its production relies on petroleum precursors such as cyclohexanone oils. With the method proposed herein, this dependence on petroleum-derived precursors/monomers is reduced by using PFA without significantly modifying some important properties of the PCL. Polymer blend films were produced by simple solvent casting. The blends were characterized in terms of surface topography by atomic force microscopy (AFM), chemical interactions between PCL and PFA by attenuated total reflection-Fourier transform infrared (ATR-FTIR), crystallinity by XRD, thermal properties by differential scanning calorimetry (DSC), and mechanical properties by tensile tests and biocompatibility by direct and indirect toxicity tests. PFA was found to improve the gas barrier properties of PCL without compromising its mechanical properties, and it demonstrated sustained antioxidant effect with excellent biocompatibility. Our results indicate that these new blends can be potentially used in diverse applications ranging from food packing to biomedical devices.
RESUMEN
Ethyl cellulose (EC)/polydimethylsiloxane (PDMS) composite films were prepared at various concentrations of PDMS in the films (0, 5, 10, 15, and 20â¯wt.%). Morphological and chemical analysis by EDX-SEM and ATR-FTIR showed that EC-rich matrices and PDMS-rich particles were formed, with the two polymers interacting through Hbonds. The number and diameter of particles in the composite depended on the PDMS content and allowed a fine tuning of several properties such as opacity, hydrophobicity, water uptake, and water permeability. Relative low amounts of clove essential oil were also added to the most waterproof composite material (80â¯wt.% ethyl cellulose and 20â¯wt.% PDMS). The essential oil increased the flexibility and the antioxidant capacity of the composite. Finally, the antimicrobial properties were tested against common pathogens such as Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The presence of clove essential oil reduced the biofilm formation on the composites.
Asunto(s)
Celulosa/análogos & derivados , Aceites Volátiles/química , Siliconas/química , Syzygium/química , Temperatura , Antibacterianos/química , Antibacterianos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Celulosa/química , Fenómenos Mecánicos , Staphylococcus aureus/efectos de los fármacos , Agua/química , HumectabilidadRESUMEN
The separation of oil from water in emulsions is a great environmental challenge, since oily wastewater is industrially produced. Here, we demonstrate a highly efficient method to separate oil from water in non-stabilized emulsions, using functionalized cellulose fiber networks. This is achieved by the modification of the wetting properties of the fibers, transforming them from oil- and water-absorbing to water-absorbing and oil-proof. In particular, two diverse layers of polymeric coatings, paraffin wax and poly(dimethylsiloxane)-b-poly(ethylene oxide) (PDMS-b-PEO) diblock copolymer, are applied on the surface of each individual fiber by a two-step dip adsorption process. The resulting cellulose networks exhibit superhydrophilicity and underwater superoleophobicity and they are mechanically reinforced. Therefore, the described treatment makes cellulose fiber networks excellent candidates for the filtration and subsequent removal of oil from oil-in-water non-stabilized emulsions with oil separation efficiency up to 99%. The good selectivity, reproducibility, and cost effectiveness of the preparation process leads to the production of low cost filters that can be used in oilâ»water separation applications.
RESUMEN
The sorption of anionic polysaccharides pectin, alginate, and xanthan with cellulose were investigated in presence of calcium. Calcium sorption to cellulose was limited by the carboxyl group content in fibers. Atomic Absorption Spectroscopy (AAS) analysis was used to measure the calcium in cellulose fibers and chemical oxygen demand (COD) analysis reveals that the divalent ions calcium can bind the polysaccharide onto cellulose fibers. The amount of calcium and polysaccharide bound in Ca2+/polysaccharide modified cellulose fibers was 5.8-12.5mM Ca2+/kg fibers and 1500-2400mg polysaccharide/kg fibers, respectively. Fourier Transform Infrared Spectroscopy-Attenuated Total Reflectance (FTIR-ATR) analysis confirmed the presence of polysaccharide on calcium containing cellulose fibers. The results of alizarin dyeing experiments at the end of polysaccharide sorption further confirmed the presence of calcium in Ca2+/polysaccharide modified cellulose fibers. The basic phenomenon of interaction of soluble ionic polysaccharide and cellulosic fibers in presence of divalent cations such as calcium is a key to understand biological functions and technological applications.