Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 94(13)2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32321815

RESUMEN

Highly pathogenic avian influenza (HPAI) viruses are enzootic in wild birds and poultry and continue to cause human infections with high mortality. To date, more than 850 confirmed human cases of H5N1 virus infection have been reported, of which ∼60% were fatal. Global concern persists that these or similar avian influenza viruses will evolve into viruses that can transmit efficiently between humans, causing a severe influenza pandemic. It was shown previously that a change in receptor specificity is a hallmark for adaptation to humans and evolution toward a transmittable virus. Substantial genetic diversity was detected within the receptor binding site of hemagglutinin of HPAI A/H5N1 viruses, evolved during human infection, as detected by next-generation sequencing. Here, we investigated the functional impact of substitutions that were detected during these human infections. Upon rescue of 21 mutant viruses, most substitutions in the receptor binding site (RBS) resulted in viable virus, but virus replication, entry, and stability were often impeded. None of the tested substitutions individually resulted in a clear switch in receptor preference as measured with modified red blood cells and glycan arrays. Although several combinations of the substitutions can lead to human-type receptor specificity, accumulation of multiple amino acid substitutions within a single hemagglutinin during human infection is rare, thus reducing the risk of virus adaptation to humans.IMPORTANCE H5 viruses continue to be a threat for public health. Because these viruses are immunologically novel to humans, they could spark a pandemic when adapted to transmit between humans. Avian influenza viruses need several adaptive mutations to bind to human-type receptors, increase hemagglutinin (HA) stability, and replicate in human cells. However, knowledge on adaptive mutations during human infections is limited. A previous study showed substantial diversity within the receptor binding site of H5N1 during human infection. We therefore analyzed the observed amino acid changes phenotypically in a diverse set of assays, including virus replication, stability, and receptor specificity. None of the tested substitutions resulted in a clear step toward a human-adapted virus capable of aerosol transmission. It is notable that acquiring human-type receptor specificity needs multiple amino acid mutations, and that variability at key position 226 is not tolerated, reducing the risk of them being acquired naturally.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H5N1 del Virus de la Influenza A/genética , Receptores Virales/genética , Adaptación Fisiológica/genética , Sustitución de Aminoácidos/genética , Animales , Sitios de Unión/genética , Variación Biológica Poblacional/genética , Aves , Perros , Hemaglutininas Virales/genética , Humanos , Virus de la Influenza A/genética , Gripe Aviar/virología , Gripe Humana/virología , Células de Riñón Canino Madin Darby , Aves de Corral , Unión Proteica/genética , Receptores Virales/metabolismo
2.
Clin Infect Dis ; 70(6): 1139-1146, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-31321436

RESUMEN

BACKGROUND: Since their emergence in Indonesia in 2005, 200 human infections with clade 2.1 highly pathogenic avian influenza A/H5N1 virus have been reported, associated with exceptionally high mortality (84%) compared to regions affected by other genetic clades of this virus. To provide potential clues towards understanding this high mortality, detailed clinical virological analyses were performed in specimens from 180 H5N1 patients, representing 90% of all Indonesian patients and 20% of reported H5N1-infected patients globally. METHODS: H5N1 RNA was quantified in available upper- and lower-respiratory tract specimens as well as fecal and blood samples from 180 patients with confirmed infection between 2005 and 2017. Mutations in the neuraminidase and M2 genes that confer resistance to oseltamivir and adamantanes were assessed. Fatal and nonfatal cases were compared. RESULTS: High viral RNA loads in nasal and pharyngeal specimens were associated with fatal outcome. Mortality increased over time during the study period, which correlated with increasing viral RNA loads on admission. Furthermore, the prevalence of amantadine resistance-conferring M2 mutations increased over time, and viral loads were higher in patients infected with viruses that harbored these mutations. Compared to observations from other regions, viral RNA was detected more frequently in feces (80%) and particularly in blood (85%), and antiviral responses to oseltamivir appeared less pronounced. CONCLUSIONS: These observations confirm the association of viral load with outcome of human H5N1 infections and suggest potential differences in virulence and antiviral responses to oseltamivir that may explain the exceptionally high mortality related to clade 2.1 H5N1 infections in Indonesia.


Asunto(s)
Antivirales , Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Gripe Humana , Animales , Antivirales/uso terapéutico , Humanos , Indonesia/epidemiología , Subtipo H5N1 del Virus de la Influenza A/genética , Gripe Humana/epidemiología , Neuraminidasa , Oseltamivir/uso terapéutico
3.
Virus Genes ; 56(4): 417-429, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32483655

RESUMEN

Since the initial detection in 2003, Indonesia has reported 200 human cases of highly pathogenic avian influenza H5N1 (HPAI H5N1), associated with an exceptionally high case fatality rate (84%) compared to other geographical regions affected by other genetic clades of the virus. However, there is limited information on the genetic diversity of HPAI H5N1 viruses, especially those isolated from humans in Indonesia. In this study, the genetic and antigenic characteristics of 35 HPAI H5N1 viruses isolated from humans were analyzed. Full genome sequences were analyzed for the presence of substitutions in the receptor binding site, and polymerase complex, as markers for virulence or human adaptation, as well as antiviral drug resistance substitutions. Only a few substitutions associated with human adaptation were observed, a remarkably low prevalence of the human adaptive substitution PB2-E627K, which is common during human infection with other H5N1 clades and a known virulence marker for avian influenza viruses during human infections. In addition, the antigenic profile of these Indonesian HPAI H5N1 viruses was determined using serological analysis and antigenic cartography. Antigenic characterization showed two distinct antigenic clusters, as observed previously for avian isolates. These two antigenic clusters were not clearly associated with time of virus isolation. This study provides better insight in genetic diversity of H5N1 viruses during human infection and the presence of human adaptive markers. These findings highlight the importance of evaluating virus genetics for HPAI H5N1 viruses to estimate the risk to human health and the need for increased efforts to monitor the evolution of H5N1 viruses across Indonesia.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Gripe Aviar/inmunología , Gripe Humana/inmunología , Animales , Antígenos Virales/genética , Antígenos Virales/inmunología , Aves/virología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Gripe Aviar/genética , Gripe Aviar/virología , Gripe Humana/genética , Gripe Humana/virología , Filogenia , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/virología
4.
Emerg Microbes Infect ; 8(1): 262-271, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30866780

RESUMEN

The continuing pandemic threat posed by avian influenza A/H5N1 viruses calls for improved insights into their evolution during human infection. We performed whole genome deep sequencing of respiratory specimens from 44 H5N1-infected individuals from Indonesia and found substantial within-host viral diversity. At nearly 30% of genome positions multiple amino acids were observed within or across samples, including positions implicated in aerosol transmission between ferrets. Amino acid variants detected our cohort were often found more frequently in available H5N1 sequences of human than avian isolates. We additionally identified previously unreported amino acid variants and multiple variants that increased in proportion over time in available sequential samples. Given the importance of the polymerase complex for host adaptation, we tested 121 amino acid variants found in the PB2, PB1 and PA subunits for their effects on polymerase activity in human cells. We identified multiple single amino acid variants in all three polymerase subunits that substantially increase polymerase activity including some with effects comparable to that of the widely recognized adaption and virulence marker PB2-E627 K. These results indicate highly dynamic evolutionary processes during human H5N1 virus infection and the potential existence of previously undocumented adaptive pathways.


Asunto(s)
Sustitución de Aminoácidos , Subtipo H5N1 del Virus de la Influenza A/clasificación , Gripe Humana/virología , Secuenciación Completa del Genoma/métodos , Evolución Molecular , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Indonesia , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Conformación Proteica , Proteínas Virales/química , Proteínas Virales/genética
5.
Virology (Auckl) ; 4: 27-34, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-25512692

RESUMEN

Influenza A (H5N1) virus, has spread to several countries in the world and has a high mortality rate. Meanwhile, the virus has evolved into several clades. The human influenza A (H5N1) virus circulating in Indonesia is a member of clade 2.1, which is different in antigenicity from other clades of influenza A (H5N1). An analysis of the antigenic variation in the H5 hemagglutinin gene (HA) of the influenza A (H5N1) virus strains circulating in Indonesia has been undertaken. Several position of amino acid mutations, including mutations at positions 35, 53, 141, 145, 163, 174, 183, 184, 189, and 231, have been identified. The mutation Val-174-Iso appears to play an important role in immunogenicity and cross-reactivity with rabbit antisera. This study shows that the evolution of the H5HA antigenic variation of the influenza A (H5N1) virus circulating in Indonesia from 2005 to 2011 may affect the immunogenicity of the virus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA