Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731963

RESUMEN

Venom peptides have evolved to target a wide range of membrane proteins through diverse mechanisms of action and structures, providing promising therapeutic leads for diseases, including pain, epilepsy, and cancer, as well as unique probes of ion channel structure-function. In this work, a high-throughput FLIPR window current screening assay on T-type CaV3.2 guided the isolation of a novel peptide named ω-Buthitoxin-Hf1a from scorpion Hottentotta franzwerneri crude venom. At only 10 amino acid residues with one disulfide bond, it is not only the smallest venom peptide known to target T-type CaVs but also the smallest structured scorpion venom peptide yet discovered. Synthetic Hf1a peptides were prepared with C-terminal amidation (Hf1a-NH2) or a free C-terminus (Hf1a-OH). Electrophysiological characterization revealed Hf1a-NH2 to be a concentration-dependent partial inhibitor of CaV3.2 (IC50 = 1.18 µM) and CaV3.3 (IC50 = 0.49 µM) depolarized currents but was ineffective at CaV3.1. Hf1a-OH did not show activity against any of the three T-type subtypes. Additionally, neither form showed activity against N-type CaV2.2 or L-type calcium channels. The three-dimensional structure of Hf1a-NH2 was determined using NMR spectroscopy and used in docking studies to predict its binding site at CaV3.2 and CaV3.3. As both CaV3.2 and CaV3.3 have been implicated in peripheral pain signaling, the analgesic potential of Hf1a-NH2 was explored in vivo in a mouse model of incision-induced acute post-surgical pain. Consistent with this role, Hf1a-NH2 produced antiallodynia in both mechanical and thermal pain.


Asunto(s)
Canales de Calcio Tipo T , Modelos Animales de Enfermedad , Hiperalgesia , Dolor Postoperatorio , Venenos de Escorpión , Animales , Canales de Calcio Tipo T/metabolismo , Canales de Calcio Tipo T/química , Ratones , Venenos de Escorpión/química , Venenos de Escorpión/farmacología , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Dolor Postoperatorio/tratamiento farmacológico , Dolor Postoperatorio/metabolismo , Calcio/metabolismo , Masculino , Humanos , Bloqueadores de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/química
2.
J Biol Chem ; 295(42): 14510-14521, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-32817170

RESUMEN

Cyclic peptides are reported to have antibacterial, antifungal, and other bioactivities. Orbitides are a class of cyclic peptides that are small, head-to-tail cyclized, composed of proteinogenic amino acids and lack disulfide bonds; they are also known in several genera of the plant family Rutaceae. Melicope xanthoxyloides is the Australian rain forest tree of the Rutaceae family in which evolidine, the first plant cyclic peptide, was discovered. Evolidine (cyclo-SFLPVNL) has subsequently been all but forgotten in the academic literature, so to redress this we used tandem MS and de novo transcriptomics to rediscover evolidine and decipher its biosynthetic origin from a short precursor just 48 residues in length. We also identified another six M. xanthoxyloides orbitides using the same techniques. These peptides have atypically diverse C termini consisting of residues not recognized by either of the known proteases plants use to macrocyclize peptides, suggesting new cyclizing enzymes await discovery. We examined the structure of two of the novel orbitides by NMR, finding one had a definable structure, whereas the other did not. Mining RNA-seq and whole genome sequencing data from other species of the Rutaceae family revealed that a large and diverse family of peptides is encoded by similar sequences across the family and demonstrates how powerful de novo transcriptomics can be at accelerating the discovery of new peptide families.


Asunto(s)
Péptidos Cíclicos/genética , Rutaceae/metabolismo , Secuencia de Aminoácidos , Cromatografía Líquida de Alta Presión , Resonancia Magnética Nuclear Biomolecular , Péptidos Cíclicos/química , Péptidos Cíclicos/metabolismo , Hojas de la Planta/metabolismo , Rutaceae/genética , Alineación de Secuencia , Espectrometría de Masas en Tándem
3.
Amino Acids ; 53(1): 143-147, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33398524

RESUMEN

The complement component C5 inhibitory peptide zilucoplan is currently in phase III clinical trials for myasthenia gravis (MG). Despite being at an advanced stage of clinical development, there have been no published reports in the literature detailing its chemical synthesis. In this work, we describe an approach for the chemical synthesis of zilucoplan and validate that the synthesised compound blocks LPS-induced C5a production from human blood.


Asunto(s)
Complemento C5/antagonistas & inhibidores , Inactivadores del Complemento/síntesis química , Péptidos Cíclicos/síntesis química , Complemento C5/síntesis química , Complemento C5/química , Complemento C5/farmacología , Inactivadores del Complemento/química , Inactivadores del Complemento/farmacología , Humanos , Concentración 50 Inhibidora , Lipopolisacáridos/farmacología , Estructura Molecular , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Técnicas de Síntesis en Fase Sólida
4.
J Nat Prod ; 84(11): 2914-2922, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34672199

RESUMEN

Plants are an excellent source of bioactive peptides, often with disulfide bonds and/or a cyclic backbone. While focus has predominantly been directed at disulfide-rich peptides, a large family of small, cyclic plant peptides lacking disulfide bonds, known as orbitides, has been relatively ignored. A recently discovered subfamily of orbitides is the PawL-derived peptides (PLPs), produced during the maturation of precursors for seed storage albumins. Although their evolutionary origins have been dated, in-depth exploration of the family's structural characteristics and potential bioactivities remains to be conducted. Here we present an extensive and systematic characterization of the PLP family. Nine PLPs were chosen and prepared by solid phase peptide synthesis. Their structural features were studied using solution NMR spectroscopy, and seven were found to possess regions of backbone order. Ordered regions consist of ß-turns, with some PLPs adopting two well-defined ß-turns within sequences as short as seven residues, which are largely the result of side chain interactions. Our data highlight that the sequence diversity within this family results in equally diverse structures. None of these nine PLPs showed antibacterial or antifungal activity.


Asunto(s)
Péptidos Cíclicos/química , Antiinfecciosos/farmacología , Espectroscopía de Resonancia Magnética , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/aislamiento & purificación , Péptidos Cíclicos/farmacología , Técnicas de Síntesis en Fase Sólida
5.
J Nat Prod ; 84(12): 3138-3146, 2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-34874154

RESUMEN

Natural product discovery by isolation and structure elucidation is a laborious task often requiring ample quantities of biological starting material and frequently resulting in the rediscovery of previously known compounds. However, peptides are a compound class amenable to an alternative genomic, transcriptomic, and in silico discovery route by similarity searches of known peptide sequences against sequencing data. Based on the sequences of barrettides A and B, we identified five new barrettide sequences (barrettides C-G) predicted from the North Atlantic deep-sea demosponge Geodia barretti (Geodiidae). We synthesized, folded, and investigated one of the newly described barrettides, barrettide C (NVVPCFCVEDETSGAKTCIPDNCDASRGTNP, disulfide connectivity I-IV, II-III). Co-elution experiments of synthetic and sponge-derived barrettide C confirmed its native conformation. NMR spectroscopy and the anti-biofouling activity on larval settlement of the bay barnacle Amphibalanus improvisus (IC50 0.64 µM) show that barrettide C is highly similar to barrettides A and B in both structure and function. Several lines of evidence suggest that barrettides are produced by the sponge itself and not one of its microbial symbionts.


Asunto(s)
Geodia/metabolismo , Péptidos/metabolismo , Animales , Ecosistema , Péptidos/química , Agua de Mar
6.
J Nat Prod ; 83(10): 3030-3040, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-32997497

RESUMEN

Plants and their seeds have been shown to be a rich source of cystine-stabilized peptides. Recently a new family of plant seed peptides whose sequences are buried within precursors for seed storage vicilins was identified. Members of this Vicilin-Buried Peptide (VBP) family are found in distantly related plant species including the monocot date palm, as well as dicotyledonous species like pumpkin and sesame. Genetic evidence for their widespread occurrence indicates that they are of ancient origin. Limited structural studies have been conducted on VBP family members, but two members have been shown to adopt a helical hairpin fold. We present an extensive characterization of VBPs using solution NMR spectroscopy, to better understand their structural features. Four peptides were produced by solid phase peptide synthesis and shown to favor a helix-loop-helix hairpin fold, as a result of the I-IV/II-III ladderlike connectivity of their disulfide bonds. Interhelical interactions, including hydrophobic contacts and salt bridges, are critical for the fold stability and control the angle at which the antiparallel α-helices interface. Activities reported for VBPs include trypsin inhibitory activity and inhibition of ribosomal function; however, their diverse structural features despite a common fold suggest that additional bioactivities yet to be revealed are likely.


Asunto(s)
Pliegue de Proteína , Proteínas de Almacenamiento de Semillas/química , Secuencia de Aminoácidos , Disulfuros/química , Secuencias Hélice-Asa-Hélice , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Estructura Molecular , Péptidos/síntesis química , Péptidos/química , Péptidos/farmacología , Conformación Proteica en Hélice alfa , Proteínas de Almacenamiento de Semillas/síntesis química , Proteínas de Almacenamiento de Semillas/farmacología , Inhibidores de Tripsina/farmacología
7.
J Nat Prod ; 82(8): 2152-2158, 2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31392883

RESUMEN

Cyclic peptides are abundant in plants and have attracted interest due to their bioactivity and potential as drug scaffolds. Orbitides are head-to-tail cyclic peptides that are ribosomally synthesized, post-translationally modified, and lack disulfide bonds. All known orbitides contain 5-12 amino acid residues. Here we describe PLP-53, a novel orbitide from the seed of Ratibida columnifera. PLP-53 consists of 16 amino acids, four residues larger than any known orbitide. NMR structural studies showed that, compared to previously characterized orbitides, PLP-53 is more flexible and, under the studied conditions, did not adopt a single ordered conformation based on analysis of NOEs and chemical shifts.


Asunto(s)
Aminoácidos/análisis , Péptidos Cíclicos/aislamiento & purificación , Ratibida/embriología , Semillas/química , Secuencia de Aminoácidos , Espectrometría de Masas , Resonancia Magnética Nuclear Biomolecular , Péptidos Cíclicos/química , Conformación Proteica
8.
Biochem Pharmacol ; 228: 116175, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38552850

RESUMEN

Acid-sensing ion channel 1a (ASIC1a) is a proton-gated channel involved in synaptic transmission, pain signalling, and several ischemia-associated pathological conditions. The spider venom-derived peptides PcTx1 and Hi1a are two of the most potent ASIC1a inhibitors known and have been instrumental in furthering our understanding of the structure, function, and biological roles of ASICs. To date, homologous spider peptides with different pharmacological profiles at ASIC1a have yet to be discovered. Here we report the characterisation of Hc3a, a single inhibitor cystine knot peptide from the Australian funnel-web spider Hadronyche cerberea with sequence similarity to PcTx1. We show that Hc3a has complex pharmacology and binds different ASIC1a conformational states (closed, open, and desensitised) with different affinities, with the most prominent effect on desensitisation. Hc3a slows the desensitisation kinetics of proton-activated ASIC1a currents across multiple application pHs, and when bound directly to ASIC1a in the desensitised conformation promotes current inhibition. The solution structure of Hc3a was solved, and the peptide-channel interaction examined via mutagenesis studies to highlight how small differences in sequence between Hc3a and PcTx1 can lead to peptides with distinct pharmacology. The discovery of Hc3a expands the pharmacological diversity of spider venom peptides targeting ASIC1a and adds to the toolbox of compounds to study the intricacies of ASIC1 gating.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Venenos de Araña , Arañas , Canales Iónicos Sensibles al Ácido/metabolismo , Canales Iónicos Sensibles al Ácido/genética , Canales Iónicos Sensibles al Ácido/química , Venenos de Araña/química , Venenos de Araña/farmacología , Venenos de Araña/genética , Animales , Arañas/metabolismo , Péptidos/farmacología , Péptidos/química , Xenopus laevis , Secuencia de Aminoácidos , Humanos , Bloqueadores del Canal Iónico Sensible al Ácido/farmacología , Bloqueadores del Canal Iónico Sensible al Ácido/química
9.
Chem Sci ; 15(33): 13227-13233, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39183914

RESUMEN

The peptide recifin A is the inaugural member of the structurally intriguing new fold referred to as a tyrosine-lock. Its central four stranded ß-sheet is stabilized by a unique arrangement in which three disulfide bonds and their interconnecting backbone form a ring that wraps around one of the strands, resulting in a Tyr side chain being buried in the molecular core. Here we aimed to establish a synthetic route to this complex class of natural products. Full length recifin A was successfully generated through native chemical ligation chemistry joining two 21 amino acid residue fragments. Surprisingly, reduced linear recifin A readily adopts the correct, topologically-complex fold via random oxidation of the cysteines, suggesting it is highly energetically favored. Utilizing our synthetic strategy, we generated five recifin A analogues to investigate the structural role of the central Tyr residue and provide the first insights into the structure activity relationship of recifin A towards its cancer target tyrosyl-DNA phosphodiesterase I.

10.
ACS Pharmacol Transl Sci ; 4(6): 1808-1817, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34927012

RESUMEN

The complement activation peptide C5a is a key mediator of inflammation that is associated with numerous immune disorders. C5a binds and activates two seven-transmembrane receptors, C5aR1 and C5aR2. Experimentally, C5a is utilized to investigate C5a receptor biology and to screen for potential C5aR1/C5aR2 therapeutics. Currently, laboratory sources of C5a stem from either isolation of endogenous C5a from human serum or most predominantly via recombinant expression. An alternative approach to C5a production is chemical synthesis, which has several advantages, including the ability to introduce non-natural amino acids and site-specific modifications whilst also maintaining a lower probability of C5a being contaminated with microbial molecules or other endogenous proteins. Here, we describe the efficient synthesis of both human (hC5a) and mouse C5a (mC5a) without the need for ligation chemistry. We validate the synthetic peptides by comparing pERK1/2 signaling in CHO-hC5aR1 cells and primary human macrophages (for hC5a) and in RAW264.7 cells (for mC5a). C5aR2 activation was confirmed by measuring ß-arrestin recruitment in C5aR2-transfected HEK293 cells. We also demonstrate the functionalization of synthetic C5a through the introduction of a lanthanide chelating cage to facilitate a screen for the binding of ligands to C5aR1. Finally, we verify that the synthetic ligands are functionally similar to recombinant or native C5a by assessing hC5a-induced neutrophil chemotaxis in vitro and mC5a-mediated neutrophil mobilization in vivo. We propose that the synthetic hC5a and mC5a described herein are valuable alternatives to recombinant or purified C5a for in vitro and in vivo applications and add to the growing complement reagent toolbox.

11.
RSC Chem Biol ; 2(6): 1682-1691, 2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34977583

RESUMEN

Head-to-tail cyclic and disulfide-rich peptides are natural products with applications in drug design. Among these are the PawS-Derived Peptides (PDPs) produced in seeds of the daisy plant family. PDP-23 is a unique member of this class in that it is twice the typical size and adopts two ß-hairpins separated by a hinge region. The ß-hairpins, both stabilised by a single disulfide bond, fold together into a V-shaped tertiary structure creating a hydrophobic core. In water two PDP-23 molecules merge their hydrophobic cores to form a square prism quaternary structure. Here, we synthesised PDP-23 and its enantiomer comprising d-amino acids and achiral glycine, which allowed us to confirm these solution NMR structural data by racemic crystallography. Furthermore, we discovered the related PDP-24. NMR analysis showed that PDP-24 does not form a dimeric structure and it has poor water solubility, but in less polar solvents adopts near identical secondary and tertiary structure to PDP-23. The natural role of these peptides in plants remains enigmatic, as we did not observe any antimicrobial or insecticidal activity. However, the plasticity of these larger PDPs and their ability to change structure under different conditions make them appealing peptide drug scaffolds.

12.
Chem Sci ; 12(19): 6670-6683, 2021 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-34040741

RESUMEN

Head-to-tail cyclized peptides are intriguing natural products with unusual properties. The PawS-Derived Peptides (PDPs) are ribosomally synthesized as part of precursors for seed storage albumins in species of the daisy family, and are post-translationally excised and cyclized during proteolytic processing. Here we report a PDP twice the typical size and with two disulfide bonds, identified from seeds of Zinnia elegans. In water, synthetic PDP-23 forms a unique dimeric structure in which two monomers containing two ß-hairpins cross-clasp and enclose a hydrophobic core, creating a square prism. This dimer can be split by addition of micelles or organic solvent and in monomeric form PDP-23 adopts open or closed V-shapes, exposing different levels of hydrophobicity dependent on conditions. This chameleonic character is unusual for disulfide-rich peptides and engenders PDP-23 with potential for cell delivery and accessing novel targets. We demonstrate this by conjugating a rhodamine dye to PDP-23, creating a stable, cell-penetrating inhibitor of the P-glycoprotein drug efflux pump.

13.
ACS Chem Biol ; 14(5): 979-993, 2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-30973714

RESUMEN

New proteins can evolve by duplication and divergence or de novo, from previously noncoding DNA. A recently observed mechanism is for peptides to evolve within a "host" protein and emerge by proteolytic processing. The first examples of such interstitial peptides were ones hosted by precursors for seed storage albumin. Interstitial peptides have also been observed in precursors for seed vicilins, but current evidence for vicilin-buried peptides (VBPs) is limited to seeds of the broadleaf plants pumpkin and macadamia. Here, an extensive sequence analysis of vicilin precursors suggested that peptides buried within the N-terminal region of preprovicilins are widespread and truly ancient. Gene sequences indicative of interstitial peptides were found in species from Amborellales to eudicots and include important grass and legume crop species. We show the first protein evidence for a monocot VBP in date palm seeds as well as protein evidence from other crops including the common tomato, sesame and pumpkin relatives, cucumber, and the sponge loofah ( Luffa aegyptiaca). Their excision was consistent with asparaginyl endopeptidase-mediated maturation, and sequences were confirmed by tandem mass spectrometry. Our findings suggest that the family is large and ancient and that based on the NMR solution structures for loofah Luffin P1 and tomato VBP-8, VBPs adopt a helical hairpin fold stapled by two internal disulfide bonds. The first VBPs characterized were a protease inhibitor, antimicrobials, and a ribosome inactivator. The age and evolutionary retention of this peptide family suggest its members play important roles in plant biology.


Asunto(s)
Proteínas de Almacenamiento de Semillas/química , Secuencia de Aminoácidos , Proteolisis , Homología de Secuencia de Aminoácido , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA