Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Am Chem Soc ; 146(38): 26320-26330, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39276112

RESUMEN

O-GlcNAc transferase (OGT) is an essential mammalian enzyme that binds thousands of different proteins, including substrates that it glycosylates and nonsubstrate interactors that regulate its biology. OGT also has one proteolytic substrate, the transcriptional coregulator host cell factor 1 (HCF-1), which it cleaves in a process initiated by glutamate side chain glycosylation at a series of central repeats. Although HCF-1 is OGT's most prominent binding partner, its affinity for the enzyme has not been quantified. Here, we report a time-resolved Förster resonance energy transfer assay to measure ligand binding to OGT and show that an HCF-1-derived polypeptide (HCF3R) binds with picomolar affinity to the enzyme (KD ≤ 85 pM). This high affinity is driven in large part by conserved asparagines in OGT's tetratricopeptide repeat domain, which form bidentate contacts to the HCF-1 peptide backbone; replacing any one of these asparagines with alanine reduces binding by more than 5 orders of magnitude. Because the HCF-1 polypeptide binds so tightly to OGT, we tested its ability to inhibit enzymatic function. We found that HCF3R potently inhibits OGT both in vitro and in cells and used this finding to develop a genetically encoded, inducible OGT inhibitor that can be degraded with a small molecule, allowing for reversible and tunable inhibition of OGT.


Asunto(s)
Inhibidores Enzimáticos , N-Acetilglucosaminiltransferasas , Péptidos , N-Acetilglucosaminiltransferasas/antagonistas & inhibidores , N-Acetilglucosaminiltransferasas/metabolismo , N-Acetilglucosaminiltransferasas/química , Humanos , Péptidos/química , Péptidos/metabolismo , Péptidos/farmacología , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Factor C1 de la Célula Huésped/metabolismo , Factor C1 de la Célula Huésped/química , Factor C1 de la Célula Huésped/antagonistas & inhibidores , Transferencia Resonante de Energía de Fluorescencia , Modelos Moleculares
2.
Nat Chem Biol ; 17(11): 1168-1177, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34675420

RESUMEN

The pace of progress in biomedical research directly depends on techniques that enable the quantitative interrogation of interactions between proteins and other biopolymers, or with their small-molecule ligands. Time-resolved Förster resonance energy transfer (TR-FRET) assay platforms offer high sensitivity and specificity. However, the paucity of accessible and biocompatible luminescent lanthanide complexes, which are essential reagents for TR-FRET-based approaches, and their poor cellular permeability have limited broader adaptation of TR-FRET beyond homogeneous and extracellular assay applications. Here, we report the development of CoraFluors, a new class of macrotricyclic terbium complexes, which are synthetically readily accessible, stable in biological media and exhibit photophysical and physicochemical properties that are desirable for biological studies. We validate the performance of CoraFluors in cell-free systems, identify cell-permeable analogs and demonstrate their utility in the quantitative domain-selective characterization of Keap1 ligands, as well as in isoform-selective target engagement profiling of HDAC1 inhibitors in live cells.


Asunto(s)
Complejos de Coordinación/química , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/química , Complejos de Coordinación/síntesis química , Complejos de Coordinación/farmacología , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/farmacología , Células HEK293 , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/antagonistas & inhibidores , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Estructura Molecular
3.
STAR Protoc ; 5(2): 103129, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38857155

RESUMEN

Comprehensive characterization of small-molecule degraders, including binary and ternary complex formation and degradation efficiency, is critical for bifunctional ligand development and understanding structure-activity relationships. Here, we present a protocol for the biochemical and cellular profiling of small-molecule degraders based on CoraFluor time-resolved fluorescence resonance energy transfer (TR-FRET) technology. We describe steps for labeling antibodies and proteins, tracer saturation binding, binary target engagement, ternary complex profiling, and off-rate determination. We then detail procedures for the quantification of endogenous and GFP fusion proteins in cell lysates. For complete details on the use and execution of this protocol, please refer to Ichikawa et al.1.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Transferencia Resonante de Energía de Fluorescencia/métodos , Humanos , Bibliotecas de Moléculas Pequeñas/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Ligandos
4.
Cell Chem Biol ; 31(6): 1162-1175.e10, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38320555

RESUMEN

Cereblon (CRBN) is an E3 ligase substrate adapter widely exploited for targeted protein degradation (TPD) strategies. However, achieving efficient and selective target degradation is a preeminent challenge with ligands that engage CRBN. Here, we report that the cyclimids, ligands derived from the C-terminal cyclic imide degrons of CRBN, exhibit distinct modes of interaction with CRBN and offer a facile approach for developing potent and selective bifunctional degraders. Quantitative TR-FRET-based characterization of 60 cyclimid degraders in binary and ternary complexes across different substrates revealed that ternary complex binding affinities correlated strongly with cellular degradation efficiency. Our studies establish the unique properties of the cyclimids as versatile warheads in TPD and a systematic biochemical approach for quantifying ternary complex formation to predict their cellular degradation activity, which together will accelerate the development of ligands that engage CRBN.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteolisis , Ubiquitina-Proteína Ligasas , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/química , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Ligandos , Estructura Molecular , Células HEK293
5.
Sci Rep ; 14(1): 9064, 2024 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643236

RESUMEN

Frontotemporal dementia (FTD) is a debilitating neurodegenerative disorder with currently no disease-modifying treatment options available. Mutations in GRN are one of the most common genetic causes of FTD, near ubiquitously resulting in progranulin (PGRN) haploinsufficiency. Small molecules that can restore PGRN protein to healthy levels in individuals bearing a heterozygous GRN mutation may thus have therapeutic value. Here, we show that epigenetic modulation through bromodomain and extra-terminal domain (BET) inhibitors (BETi) potently enhance PGRN protein levels, both intracellularly and secreted forms, in human central nervous system (CNS)-relevant cell types, including in microglia-like cells. In terms of potential for disease modification, we show BETi treatment effectively restores PGRN levels in neural cells with a GRN mutation known to cause PGRN haploinsufficiency and FTD. We demonstrate that BETi can rapidly and durably enhance PGRN in neural progenitor cells (NPCs) in a manner dependent upon BET protein expression, suggesting a gain-of-function mechanism. We further describe a CNS-optimized BETi chemotype that potently engages endogenous BRD4 and enhances PGRN expression in neuronal cells. Our results reveal a new epigenetic target for treating PGRN-deficient forms of FTD and provide mechanistic insight to aid in translating this discovery into therapeutics.


Asunto(s)
Demencia Frontotemporal , Humanos , Progranulinas/metabolismo , Demencia Frontotemporal/tratamiento farmacológico , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Mutación , Epigénesis Genética , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular/metabolismo
6.
Adv Mater ; 36(21): e2311467, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38241649

RESUMEN

Successful and selective inhibition of the cytosolic protein-protein interaction (PPI) between nuclear factor erythroid 2-related factor 2 (Nrf2) and Kelch-like ECH-associating protein 1 (Keap1) can enhance the antioxidant response, with the potential for a therapeutic effect in a range of settings including in neurodegenerative disease (ND). Small molecule inhibitors have been developed, yet many have off-target effects, or are otherwise limited by poor cellular permeability. Peptide-based strategies have also been attempted to enhance specificity, yet face challenges due to susceptibility to degradation and lack of cellular penetration. Herein, these barriers are overcome utilizing a polymer-based proteomimetics. The protein-like polymer (PLP) consists of a synthetic, lipophilic polymer backbone displaying water soluble Keap1-binding peptides on each monomer unit forming a brush polymer architecture. The PLPs are capable of engaging Keap1 and displacing the cellular protective transcription factor Nrf2, which then translocates to the nucleus, activating the antioxidant response element (ARE). PLPs exhibit increased Keap1 binding affinity by several orders of magnitude compared to free peptides, maintain serum stability, are cell-penetrant, and selectively activate the ARE pathway in cells, including in primary cortical neuronal cultures. Keap1/Nrf2-inhibitory PLPs have the potential to impact the treatment of disease states associated with dysregulation of oxidative stress, such as NDs.


Asunto(s)
Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , Polímeros , Unión Proteica , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/química , Factor 2 Relacionado con NF-E2/metabolismo , Polímeros/química , Humanos , Animales , Péptidos/química , Péptidos/metabolismo , Péptidos/farmacología , Elementos de Respuesta Antioxidante , Neuronas/metabolismo , Neuronas/efectos de los fármacos
7.
bioRxiv ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38798357

RESUMEN

Cancer mutations can create neomorphic protein-protein interactions to drive aberrant function 1 . As a substrate receptor of the CULLIN3-RBX1 E3 ubiquitin ligase complex, KBTBD4 is recurrently mutated in medulloblastoma (MB) 2 , the most common embryonal brain tumor in children, and pineoblastoma 3 . These mutations impart gain-of-function to KBTBD4 to induce aberrant degradation of the transcriptional corepressor CoREST 4 . However, their mechanism of action remains unresolved. Here, we elucidate the mechanistic basis by which KBTBD4 mutations promote CoREST degradation through engaging HDAC1/2, the direct neomorphic target of the substrate receptor. Using deep mutational scanning, we systematically map the mutational landscape of the KBTBD4 cancer hotspot, revealing distinct preferences by which insertions and substitutions can promote gain-of-function and the critical residues involved in the hotspot interaction. Cryo-electron microscopy (cryo-EM) analysis of two distinct KBTBD4 cancer mutants bound to LSD1-HDAC1-CoREST reveals that a KBTBD4 homodimer asymmetrically engages HDAC1 with two KELCH-repeat propeller domains. The interface between HDAC1 and one of the KBTBD4 propellers is stabilized by the MB mutations, which directly insert a bulky side chain into the active site pocket of HDAC1. Our structural and mutational analyses inform how this hotspot E3-neo-substrate interface can be chemically modulated. First, our results unveil a converging shape complementarity-based mechanism between gain-of-function E3 mutations and a molecular glue degrader, UM171. Second, we demonstrate that HDAC1/2 inhibitors can block the mutant KBTBD4-HDAC1 interface, the aberrant degradation of CoREST, and the growth of KBTBD4-mutant MB models. Altogether, our work reveals the structural and mechanistic basis of cancer mutation-driven neomorphic protein-protein interactions and pharmacological strategies to modulate their action for therapeutic applications.

8.
Free Radic Biol Med ; 204: 215-225, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37156295

RESUMEN

KEAP1 promotes the ubiquitin-dependent degradation of NRF2 by assembling into a CUL3-dependent ubiquitin ligase complex. Oxidative and electrophilic stress inhibit KEAP1 allowing NRF2 to accumulate for the transactivation of stress response genes. To date there are no structures of the KEAP1-CUL3 interaction nor binding data to show the contributions of different domains to their binding affinity. We determined a crystal structure of the BTB and 3-box domains of human KEAP1 in complex with the CUL3 N-terminal domain that showed a heterotetrameric assembly with 2:2 stoichiometry. To support the structural data, we developed a versatile TR-FRET-based assay system to profile the binding of BTB-domain-containing proteins to CUL3 and determine the contribution of distinct protein features, revealing the importance of the CUL3 N-terminal extension for high affinity binding. We further provide direct evidence that the investigational drug CDDO does not disrupt the KEAP1-CUL3 interaction, even at high concentrations, but reduces the affinity of KEAP1-CUL3 binding. The TR-FRET-based assay system offers a generalizable platform for profiling this protein class and may form a suitable screening platform for ligands that disrupt these interactions by targeting the BTB or 3-box domains to block E3 ligase function.


Asunto(s)
Proteínas Cullin , Factor 2 Relacionado con NF-E2 , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Unión Proteica
9.
Blood Cancer J ; 13(1): 12, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36631435

RESUMEN

Multiple myeloma (MM) is a plasma cell malignancy characterised by aberrant production of immunoglobulins requiring survival mechanisms to adapt to proteotoxic stress. We here show that glutamyl-prolyl-tRNA synthetase (GluProRS) inhibition constitutes a novel therapeutic target. Genomic data suggest that GluProRS promotes disease progression and is associated with poor prognosis, while downregulation in MM cells triggers apoptosis. We developed NCP26, a novel ATP-competitive ProRS inhibitor that demonstrates significant anti-tumour activity in multiple in vitro and in vivo systems and overcomes metabolic adaptation observed with other inhibitor chemotypes. We demonstrate a complex phenotypic response involving protein quality control mechanisms that centers around the ribosome as an integrating hub. Using systems approaches, we identified multiple downregulated proline-rich motif-containing proteins as downstream effectors. These include CD138, transcription factors such as MYC, and transcription factor 3 (TCF3), which we establish as a novel determinant in MM pathobiology through functional and genomic validation. Our preclinical data therefore provide evidence that blockade of prolyl-aminoacylation evokes a complex pro-apoptotic response beyond the canonical integrated stress response and establish a framework for its evaluation in a clinical setting.


Asunto(s)
Aminoacil-ARNt Sintetasas , Mieloma Múltiple , Humanos , Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Aminoacil-ARNt Sintetasas/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/metabolismo
10.
Cell Rep Methods ; 3(3): 100421, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-37056371

RESUMEN

Serological assays are important diagnostic tools for surveying exposure to the pathogen, monitoring immune response post vaccination, and managing spread of the infectious agent among the population. Current serological laboratory assays are often limited because they require the use of specialized laboratory technology and/or work with a limited number of sample types. Here, we evaluate an alternative by developing time-resolved Förster resonance energy transfer (TR-FRET) homogeneous assays that exhibited exceptional versatility, scalability, and sensitivity and outperformed or matched currently used strategies in terms of sensitivity, specificity, and precision. We validated the performance of the assays measuring total immunoglobulin G (IgG) levels; antibodies against severe acute respiratory syndrome coronavirus (SARS-CoV) or Middle Eastern respiratory syndrome (MERS)-CoV spike (S) protein; and SARS-CoV-2 S and nucleocapsid (N) proteins and applied it to several large sample sets and real-world applications. We further established a TR-FRET-based ACE2-S competition assay to assess the neutralization propensity of the antibodies. Overall, these TR-FRET-based serological assays can be rapidly extended to other antigens and are compatible with commonly used plate readers.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Transferencia Resonante de Energía de Fluorescencia , Anticuerpos Antivirales , Nucleocápside , Prueba de COVID-19
11.
Cell Chem Biol ; 29(7): 1140-1152.e5, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35298895

RESUMEN

The histone deacetylase paralogs HDAC1/2/3 and their corepressor complexes serve as epigenetic master regulators of chromatin function. Over the past decades, HDACs have been widely pursued as pharmacological targets, and considerable efforts have been invested in the development of small molecule drugs. Specifically, ortho-aminoanilide-derived inhibitors, including CI-994 and Cpd-60, stand out with their attractive selectivity profiles and have been used extensively as tools to delineate the biological roles of specific HDAC isoforms and complexes. Here, we apply a suite of activity-independent strategies to investigate how dynamic processes that regulate HDAC complexes govern the isoform and complex selectivity of HDAC inhibitors. Importantly, we find that overreliance on static and simplified biochemical activity assays has confounded the determination of the biological selectivity of these ligands. Our data urge a comprehensive reinterpretation of numerous studies utilizing these tool compounds for the interrogation of epigenetic and other cellular processes.


Asunto(s)
Inhibidores de Histona Desacetilasas , Histona Desacetilasas , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/química , Isoformas de Proteínas
12.
Cell Chem Biol ; 29(8): 1333-1340.e5, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35649410

RESUMEN

We describe a generalizable time-resolved Förster resonance energy transfer (TR-FRET)-based platform to profile the cellular action of heterobifunctional degraders (or proteolysis-targeting chimeras [PROTACs]) that is capable of both accurately quantifying protein levels in whole-cell lysates in less than 1 h and measuring small-molecule target engagement to endogenous proteins, here specifically for human bromodomain-containing protein 4 (BRD4). The detection mix consists of a single primary antibody targeting the protein of interest, a luminescent donor-labeled anti-species nanobody, and a fluorescent acceptor ligand. Importantly, our strategy can readily be applied to other targets of interest and will greatly facilitate the cell-based profiling of small-molecule inhibitors and PROTACs in a high-throughput format with unmodified cell lines. We furthermore validate our platform in the characterization of celastrol, a p-quinone methide-containing pentacyclic triterpenoid, as a broad cysteine-targeting E3 ubiquitin ligase warhead for potent and efficient targeted protein degradation.


Asunto(s)
Proteínas Nucleares , Factores de Transcripción , Proteínas de Ciclo Celular/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Triterpenos Pentacíclicos , Proteolisis , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
13.
Nat Commun ; 13(1): 4976, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-36008486

RESUMEN

The development of next-generation antimalarials that are efficacious against the human liver and asexual blood stages is recognized as one of the world's most pressing public health challenges. In recent years, aminoacyl-tRNA synthetases, including prolyl-tRNA synthetase, have emerged as attractive targets for malaria chemotherapy. We describe the development of a single-step biochemical assay for Plasmodium and human prolyl-tRNA synthetases that overcomes critical limitations of existing technologies and enables quantitative inhibitor profiling with high sensitivity and flexibility. Supported by this assay platform and co-crystal structures of representative inhibitor-target complexes, we develop a set of high-affinity prolyl-tRNA synthetase inhibitors, including previously elusive aminoacyl-tRNA synthetase triple-site ligands that simultaneously engage all three substrate-binding pockets. Several compounds exhibit potent dual-stage activity against Plasmodium parasites and display good cellular host selectivity. Our data inform the inhibitor requirements to overcome existing resistance mechanisms and establish a path for rational development of prolyl-tRNA synthetase-targeted anti-malarial therapies.


Asunto(s)
Aminoacil-ARNt Sintetasas , Antimaláricos , Plasmodium , Aminoacil-ARNt Sintetasas/química , Antimaláricos/química , Antimaláricos/farmacología , Humanos , Piperidinas , Plasmodium falciparum , Quinazolinonas , ARN de Transferencia
14.
bioRxiv ; 2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33791697

RESUMEN

We identify the prolyl-tRNA synthetase (PRS) inhibitor halofuginone 1 , a compound in clinical trials for anti-fibrotic and anti-inflammatory applications 2 , as a potent inhibitor of SARS-CoV-2 infection and replication. The interaction of SARS-CoV-2 spike protein with cell surface heparan sulfate (HS) promotes viral entry 3 . We find that halofuginone reduces HS biosynthesis, thereby reducing spike protein binding, SARS-CoV-2 pseudotyped virus, and authentic SARS-CoV-2 infection. Halofuginone also potently suppresses SARS-CoV-2 replication post-entry and is 1,000-fold more potent than Remdesivir 4 . Inhibition of HS biosynthesis and SARS-CoV-2 infection depends on specific inhibition of PRS, possibly due to translational suppression of proline-rich proteins. We find that pp1a and pp1ab polyproteins of SARS-CoV-2, as well as several HS proteoglycans, are proline-rich, which may make them particularly vulnerable to halofuginone's translational suppression. Halofuginone is orally bioavailable, has been evaluated in a phase I clinical trial in humans and distributes to SARS-CoV-2 target organs, including the lung, making it a near-term clinical trial candidate for the treatment of COVID-19.

15.
medRxiv ; 2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32909004

RESUMEN

The human beta coronavirus SARS-CoV-2, causative virus of COVID-19, has infected more than 15 million people globally and continues to spread. Widespread, population level testing to detect active and past infections is critical to curb the COVID-19 pandemic. Antibody (serological) testing is the only option for detecting past infections outside the narrow window accessible to nucleic acid-based tests. However, currently available serological assays commonly lack scalability. Here, we describe the development of a rapid homogenous serological assay for the detection of antibodies to SARS-CoV-2 in patient plasma. We show that the fluorescence-based assay accurately detects seroconversion in COVID-19 patients from less than 1 microliter of plasma. Using a cohort of samples from COVID-19 infected or healthy individuals, we demonstrate detection with 100% sensitivity and specificity. This assay addresses an important need for a robust, low barrier to implementation, and scalable serological assay with complementary strengths to currently available serological platforms.

16.
Protein Sci ; 28(1): 41-55, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29451338

RESUMEN

Dimedone is a widely used reagent to assess the redox state of cysteine-containing proteins as it will alkylate sulfenic acid residues, but not sulfinic acid residues. While it has been reported that dimedone can label selenenic acid residues in selenoproteins, we investigated the stability, and reversibility of this label in a model peptide system. We also wondered whether dimedone could be used to detect seleninic acid residues. We used benzenesulfinic acid, benzeneseleninic acid, and model selenocysteine-containing peptides to investigate possible reactions with dimedone. These peptides were incubated with H2 O2 in the presence of dimedone and then the reactions were followed by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS). The native peptide, H-PTVTGCUG-OH (corresponding to the native amino acid sequence of the C-terminus of mammalian thioredoxin reductase), could not be alkylated by dimedone, but could be carboxymethylated with iodoacetic acid. However the "mutant peptide," H-PTVTGAUG-OH, could be labeled with dimedone at low concentrations of H2 O2 , but the reaction was reversible by addition of thiol. Due to the reversible nature of this alkylation, we conclude that dimedone is not a good reagent for detecting selenenic acids in selenoproteins. At high concentrations of H2 O2 , selenium was eliminated from the peptide and a dimeric form of dimedone could be detected using LCMS and 1 H NMR. The dimeric dimedone product forms as a result of a seleno-Pummerer reaction with Sec-seleninic acid. Overall our results show that the reaction of dimedone with oxidized cysteine residues is quite different from the same reaction with oxidized selenocysteine residues.


Asunto(s)
Ciclohexanonas/química , Péptidos/química , Selenocisteína/química , Selenoproteínas/química , Animales , Ácidos Carboxílicos/química , Ratones , Compuestos de Organoselenio/química , Oxidación-Reducción
18.
Free Radic Biol Med ; 104: 249-261, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28108278

RESUMEN

Selenium is present in proteins in the form of selenocysteine, where this amino acid serves catalytic oxidoreductase functions. The use of selenocysteine in nature is strongly associated with redox catalysis. However, selenium is also found in a 2-selenouridine moiety at the wobble position of tRNAGlu, tRNAGln and tRNALys. It is thought that the modifications of the wobble position of the tRNA improves the selectivity of the codon-anticodon pair as a result of the physico-chemical changes that result from substitution of sulfur and selenium for oxygen. Both selenocysteine and 2-selenouridine have widespread analogs, cysteine and thiouridine, where sulfur is used instead. To examine the role of selenium in 2-selenouridine, we comparatively analyzed the oxidation reactions of sulfur-containing 2-thiouracil-5-carboxylic acid (s2c5Ura) and its selenium analog 2-selenouracil-5-carboxylic acid (se2c5Ura) using 1H-NMR spectroscopy, 77Se-NMR spectroscopy, and liquid chromatography-mass spectrometry. Treatment of s2c5Ura with hydrogen peroxide led to oxidized intermediates, followed by irreversible desulfurization to form uracil-5-carboxylic acid (c5Ura). In contrast, se2c5Ura oxidation resulted in a diselenide intermediate, followed by conversion to the seleninic acid, both of which could be readily reduced by ascorbate and glutathione. Glutathione and ascorbate only minimally prevented desulfurization of s2c5Ura, whereas very little deselenization of se2c5Ura occurred in the presence of the same antioxidants. In addition, se2c5Ura but not s2c5Ura showed glutathione peroxidase activity, further suggesting that oxidation of se2c5Ura is readily reversible, while oxidation of s2c5Ura is not. The results of the study of these model nucleobases suggest that the use of 2-selenouridine is related to resistance to oxidative inactivation that otherwise characterizes 2-thiouridine. As the use of selenocysteine in proteins also confers resistance to oxidation, our findings suggest a common mechanism for the use of selenium in biology.


Asunto(s)
Selenio/metabolismo , Selenocisteína/metabolismo , Azufre/metabolismo , Uracilo/metabolismo , Glutatión/metabolismo , Peróxido de Hidrógeno/farmacología , Espectroscopía de Resonancia Magnética , Compuestos de Organoselenio/química , Compuestos de Organoselenio/metabolismo , Oxidación-Reducción , Estrés Oxidativo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Selenio/química , Selenocisteína/química , Azufre/química , Uracilo/análogos & derivados , Uracilo/química , Uridina/análogos & derivados , Uridina/química , Uridina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA