Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-26061205

RESUMEN

Water quality parameters affecting sodium silicate performance in partial lead service line replacements were examined using a fractional factorial experimental design and static pipe systems. An external copper wire was used to create a galvanic connection between a former lead service line and a new copper pipe. The pipe systems were filled with lab prepared water made to mimic real water quality. Water was changed on a three times per week basis. A 2(4-1) fractional factorial design was used to evaluate the impact of alkalinity (15 mg L(-1) or 250 mg L(-1) as CaCO3), nitrate (1 mg L(-1) or 7 mg L(-1) as N), natural organic matter (1 mg L(-1) or 7 mg L(-1) as dissolved organic carbon), and disinfectant type (1 mg L(-1) chlorine or 3 mg L(-1) monochloramine), resulting in eight treatment conditions. Fractional factorial analysis revealed that alkalinity, natural organic matter and monochloramine had a significant positive effect on galvanic current. Natural organic matter and monochloramine also had a significant positive effect with respect to both total and dissolved lead release. For the treatment conditions examined, 67-98% of the lead released through galvanic currents was stored as corrosion scales and predominantly comprised of particulate lead (96.1-99.9%) for all eight treatments. The use of monochloramine and the presence of natural organic matter (7 mg L(-1)) were not favourable for corrosion control in sodium silicate-treated partial lead service line replacements, although further studies would be required to characterize optimal water quality parameters for specific water quality types. For utilities operating with sodium silicate as a corrosion inhibitor, this work offers further evidence regarding the consideration of chlorine as a secondary disinfectant instead of monochloramine, as well as the value of controlling natural organic matter in distributed water.


Asunto(s)
Plomo/análisis , Silicatos/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Abastecimiento de Agua , Corrosión , Plomo/química , Ontario , Calidad del Agua
2.
Water Res ; 253: 121207, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38401469

RESUMEN

Wastewater-based epidemiology (WBE) is an emerging, practical surveillance tool for monitoring community levels of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, SC2). However, a paucity of data exists regarding SARS-CoV-2 and viral biomarker behaviour in aqueous and wastewater environments. Therefore, there is a pressing need to develop efficient and robust methods that both improve method sensitivity and reduce time and cost. We present a novel method for SARS-CoV-2, Human Coronavirus 229E (229E), and Pepper Mild Mottle Virus (PMMoV) recovery utilizing surface charge-based attraction via the branched cationic polymer, polyethylenimine (PEI). Initially, dose-optimization experiments demonstrated that low concentrations of PEI (0.001% w/v) proved most effective at flocculating suspended viruses and viral material, including additional unbound SC2 viral fragments and/or RNA from raw wastewater. A design-of-experiments (DOE) approach was used to optimize virus and/or viral material aggregation behaviour and recovery across varying aqueous conditions, revealing pH as a major influence on recoverability in this system, combinatorially due to both a reduction in viral material surface charge and increased protonation of PEI-bound amine groups. Overall, this method has shown great promise in significantly improving quantitative viral recovery, providing a straightforward and effective augmentation to standard centrifugation techniques.


Asunto(s)
COVID-19 , ARN Viral , Humanos , SARS-CoV-2 , Polietileneimina , Aguas Residuales
3.
Sci Data ; 11(1): 656, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38906875

RESUMEN

During the COVID-19 pandemic, the Province of Ontario, Canada, launched a wastewater surveillance program to monitor SARS-CoV-2, inspired by the early work and successful forecasts of COVID-19 waves in the city of Ottawa, Ontario. This manuscript presents a dataset from January 1, 2021, to March 31, 2023, with RT-qPCR results for SARS-CoV-2 genes and PMMoV from 107 sites across all 34 public health units in Ontario, covering 72% of the province's and 26.2% of Canada's population. Sampling occurred 2-7 times weekly, including geographical coordinates, serviced populations, physico-chemical water characteristics, and flowrates. In doing so, this manuscript ensures data availability and metadata preservation to support future research and epidemic preparedness through detailed analyses and modeling. The dataset has been crucial for public health in tracking disease locally, especially with the rise of the Omicron variant and the decline in clinical testing, highlighting wastewater-based surveillance's role in estimating disease incidence in Ontario.


Asunto(s)
COVID-19 , SARS-CoV-2 , Aguas Residuales , Ontario/epidemiología , COVID-19/epidemiología , Aguas Residuales/virología , Humanos , Pandemias , Carga Viral
4.
RSC Adv ; 12(51): 33440-33448, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36425202

RESUMEN

The COVID-19 pandemic highlighted the inaccessibility of quick and affordable clinical diagnostics. This led to increased interest in creating low-cost portable electrochemical (EC) devices for environmental monitoring and clinical diagnostics. One important perspective is to develop new fabrication methods for functional and low-cost electrode chips. Techniques, such as electron beam and photolithography, allow precise and high-resolution electrode fabrication; however, they are costly and can be time-consuming. More recently, fused deposition modeling three-dimensional (3-D) printing is being used as an alternative fabrication technique due to the low-cost of the printer and rapid prototyping capability. In this study, we explore enhancing the conductivity of 3-D printed working electrodes with EC gold deposition. Two commercial conductive filament brands were used and investigated to fabricate electrode chips. Furthermore, strategies to apply epoxy glue and conductive silver paint were investigated to control the electrode surface area and ensure good electrical connection. This device enables detection at drinking water concentration thresholds. The practical application of the fabricated electrodes is demonstrated by detecting Cu2+ using anodic stripping voltammetry.

5.
J Hazard Mater ; 329: 211-221, 2017 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-28178636

RESUMEN

Partial lead service line replacements (PLSLR) were simulated using five recirculating pipe loops treated with either zinc orthophosphate (1mg/L as P), orthophosphate (1mg/L as P) or sodium silicate (10mg/L). Two pipe loops served as â¿¿inhibitor-freeâ¿¿ (Pb-Cu) and â¿¿galvanic freeâ¿¿ (Pb-PVC) controls. Changes in water quality (CSMR [0.2 or 1], conductivity [â¿¿330mS/cm or â¿¿560mS/cm], chlorine [1.4mg/L]) were not observed to provide a significant impact on lead or copper release, although galvanic corrosion was shown to be a driving factor. Generally, both orthophosphate and zinc orthophosphate provided better corrosion control for both total and dissolved lead (30min, 6h, 65h) and copper (30min, 6h), when compared to either the inhibitor-free control or the sodium silicate treated system. This work highlights the importance of understanding the complex interplay of corrosion inhibitors on particulate and dissolved species when considering both lead and copper.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA