Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Immunol ; 36: 461-488, 2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29677474

RESUMEN

Metabolism drives function, on both an organismal and a cellular level. In T cell biology, metabolic remodeling is intrinsically linked to cellular development, activation, function, differentiation, and survival. After naive T cells are activated, increased demands for metabolic currency in the form of ATP, as well as biomass for cell growth, proliferation, and the production of effector molecules, are met by rewiring cellular metabolism. Consequently, pharmacological strategies are being developed to perturb or enhance selective metabolic processes that are skewed in immune-related pathologies. Here we review the most recent advances describing the metabolic changes that occur during the T cell lifecycle. We discuss how T cell metabolism can have profound effects on health and disease and where it might be a promising target to treat a variety of pathologies.


Asunto(s)
Metabolismo Energético , Inmunidad , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales , Biomarcadores , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Humanos , Memoria Inmunológica , Inmunoterapia , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Mitocondrias/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Linfocitos T/citología
2.
Cell ; 185(20): 3720-3738.e13, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36103894

RESUMEN

Necrosis of macrophages in the granuloma, the hallmark immunological structure of tuberculosis, is a major pathogenic event that increases host susceptibility. Through a zebrafish forward genetic screen, we identified the mTOR kinase, a master regulator of metabolism, as an early host resistance factor in tuberculosis. We found that mTOR complex 1 protects macrophages from mycobacterium-induced death by enabling infection-induced increases in mitochondrial energy metabolism fueled by glycolysis. These metabolic adaptations are required to prevent mitochondrial damage and death caused by the secreted mycobacterial virulence determinant ESAT-6. Thus, the host can effectively counter this early critical mycobacterial virulence mechanism simply by regulating energy metabolism, thereby allowing pathogen-specific immune mechanisms time to develop. Our findings may explain why Mycobacterium tuberculosis, albeit humanity's most lethal pathogen, is successful in only a minority of infected individuals.


Asunto(s)
Mycobacterium marinum , Mycobacterium tuberculosis , Tuberculosis , Animales , Mycobacterium tuberculosis/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Pez Cebra
3.
Cell ; 184(5): 1135-1136, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33667366

RESUMEN

Understanding what regulates CD8+ T cell responses is key to effectively harnessing these cells in human disease. In this issue of Cell, Huang et al. and Chen et al. use in vivo CRISPR screens to discover novel regulators of CD8+ T cell immunity to engineer a more efficacious response against cancer and infections.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Neoplasias , Humanos , Neoplasias/genética , Linfocitos T
4.
Cell ; 184(16): 4186-4202.e20, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34216540

RESUMEN

Polyamine synthesis represents one of the most profound metabolic changes during T cell activation, but the biological implications of this are scarcely known. Here, we show that polyamine metabolism is a fundamental process governing the ability of CD4+ helper T cells (TH) to polarize into different functional fates. Deficiency in ornithine decarboxylase, a crucial enzyme for polyamine synthesis, results in a severe failure of CD4+ T cells to adopt correct subset specification, underscored by ectopic expression of multiple cytokines and lineage-defining transcription factors across TH cell subsets. Polyamines control TH differentiation by providing substrates for deoxyhypusine synthase, which synthesizes the amino acid hypusine, and mice in which T cells are deficient for hypusine develop severe intestinal inflammatory disease. Polyamine-hypusine deficiency caused widespread epigenetic remodeling driven by alterations in histone acetylation and a re-wired tricarboxylic acid (TCA) cycle. Thus, polyamine metabolism is critical for maintaining the epigenome to focus TH cell subset fidelity.


Asunto(s)
Linaje de la Célula , Poliaminas/metabolismo , Linfocitos T Colaboradores-Inductores/citología , Linfocitos T Colaboradores-Inductores/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cromatina/metabolismo , Ciclo del Ácido Cítrico/efectos de los fármacos , Colitis/inmunología , Colitis/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Epigenoma , Histonas/metabolismo , Inflamación/inmunología , Inflamación/patología , Subgrupos Linfocitarios/efectos de los fármacos , Subgrupos Linfocitarios/metabolismo , Lisina/análogos & derivados , Lisina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ornitina Descarboxilasa/metabolismo , Linfocitos T Colaboradores-Inductores/efectos de los fármacos , Células Th17/efectos de los fármacos , Células Th17/inmunología , Factores de Transcripción/metabolismo
5.
Cell ; 184(16): 4168-4185.e21, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34216539

RESUMEN

Metabolism is a major regulator of immune cell function, but it remains difficult to study the metabolic status of individual cells. Here, we present Compass, an algorithm to characterize cellular metabolic states based on single-cell RNA sequencing and flux balance analysis. We applied Compass to associate metabolic states with T helper 17 (Th17) functional variability (pathogenic potential) and recovered a metabolic switch between glycolysis and fatty acid oxidation, akin to known Th17/regulatory T cell (Treg) differences, which we validated by metabolic assays. Compass also predicted that Th17 pathogenicity was associated with arginine and downstream polyamine metabolism. Indeed, polyamine-related enzyme expression was enhanced in pathogenic Th17 and suppressed in Treg cells. Chemical and genetic perturbation of polyamine metabolism inhibited Th17 cytokines, promoted Foxp3 expression, and remodeled the transcriptome and epigenome of Th17 cells toward a Treg-like state. In vivo perturbations of the polyamine pathway altered the phenotype of encephalitogenic T cells and attenuated tissue inflammation in CNS autoimmunity.


Asunto(s)
Autoinmunidad/inmunología , Modelos Biológicos , Células Th17/inmunología , Acetiltransferasas/metabolismo , Adenosina Trifosfato/metabolismo , Aerobiosis/efectos de los fármacos , Algoritmos , Animales , Autoinmunidad/efectos de los fármacos , Cromatina/metabolismo , Ciclo del Ácido Cítrico/efectos de los fármacos , Citocinas/metabolismo , Eflornitina/farmacología , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Epigenoma , Ácidos Grasos/metabolismo , Glucólisis/efectos de los fármacos , Histona Demetilasas con Dominio de Jumonji/metabolismo , Ratones Endogámicos C57BL , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Oxidación-Reducción/efectos de los fármacos , Putrescina/metabolismo , Análisis de la Célula Individual , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Células Th17/efectos de los fármacos , Transcriptoma/genética
6.
Nat Immunol ; 24(3): 501-515, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36797499

RESUMEN

Blocking pyrimidine de novo synthesis by inhibiting dihydroorotate dehydrogenase is used to treat autoimmunity and prevent expansion of rapidly dividing cell populations including activated T cells. Here we show memory T cell precursors are resistant to pyrimidine starvation. Although the treatment effectively blocked effector T cells, the number, function and transcriptional profile of memory T cells and their precursors were unaffected. This effect occurred in a narrow time window in the early T cell expansion phase when developing effector, but not memory precursor, T cells are vulnerable to pyrimidine starvation. This vulnerability stems from a higher proliferative rate of early effector T cells as well as lower pyrimidine synthesis capacity when compared with memory precursors. This differential sensitivity is a drug-targetable checkpoint that efficiently diminishes effector T cells without affecting the memory compartment. This cell fate checkpoint might therefore lead to new methods to safely manipulate effector T cell responses.


Asunto(s)
Pirimidinas , Ciclo Celular , Diferenciación Celular
7.
Nat Immunol ; 24(3): 516-530, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36732424

RESUMEN

How lipidome changes support CD8+ effector T (Teff) cell differentiation is not well understood. Here we show that, although naive T cells are rich in polyunsaturated phosphoinositides (PIPn with 3-4 double bonds), Teff cells have unique PIPn marked by saturated fatty acyl chains (0-2 double bonds). PIPn are precursors for second messengers. Polyunsaturated phosphatidylinositol bisphosphate (PIP2) exclusively supported signaling immediately upon T cell antigen receptor activation. In late Teff cells, activity of phospholipase C-γ1, the enzyme that cleaves PIP2 into downstream mediators, waned, and saturated PIPn became essential for sustained signaling. Saturated PIP was more rapidly converted to PIP2 with subsequent recruitment of phospholipase C-γ1, and loss of saturated PIPn impaired Teff cell fitness and function, even in cells with abundant polyunsaturated PIPn. Glucose was the substrate for de novo PIPn synthesis, and was rapidly utilized for saturated PIP2 generation. Thus, separate PIPn pools with distinct acyl chain compositions and metabolic dependencies drive important signaling events to initiate and then sustain effector function during CD8+ T cell differentiation.


Asunto(s)
Fosfatos de Fosfatidilinositol , Fosfatidilinositoles , Fosfatidilinositoles/metabolismo , Transducción de Señal , Fosfolipasas de Tipo C/metabolismo , Linfocitos T CD8-positivos/metabolismo
8.
Immunity ; 56(4): 723-741, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37044062

RESUMEN

The immune response is tailored to the environment in which it takes place. Immune cells sense and adapt to changes in their surroundings, and it is now appreciated that in addition to cytokines made by stromal and epithelial cells, metabolic cues provide key adaptation signals. Changes in immune cell activation states are linked to changes in cellular metabolism that support function. Furthermore, metabolites themselves can signal between as well as within cells. Here, we discuss recent progress in our understanding of how metabolic regulation relates to type 2 immunity firstly by considering specifics of metabolism within type 2 immune cells and secondly by stressing how type 2 immune cells are integrated more broadly into the metabolism of the organism as a whole.


Asunto(s)
Sistema Inmunológico , Citocinas/inmunología , Humanos , Animales , Células Th2/inmunología , Macrófagos/inmunología , Adaptación Fisiológica , Tejido Adiposo/inmunología
9.
Cell ; 169(4): 570-586, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28475890

RESUMEN

Choices have consequences. Immune cells survey and migrate throughout the body and sometimes take residence in niche environments with distinct communities of cells, extracellular matrix, and nutrients that may differ from those in which they matured. Imbedded in immune cell physiology are metabolic pathways and metabolites that not only provide energy and substrates for growth and survival, but also instruct effector functions, differentiation, and gene expression. This review of immunometabolism will reference the most recent literature to cover the choices that environments impose on the metabolism and function of immune cells and highlight their consequences during homeostasis and disease.


Asunto(s)
Leucocitos/citología , Leucocitos/inmunología , Animales , Tracto Gastrointestinal/citología , Tracto Gastrointestinal/inmunología , Humanos , Leucocitos/metabolismo , Linfocitos T/inmunología , Microambiente Tumoral
10.
Cell ; 171(2): 385-397.e11, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28919076

RESUMEN

T cell receptor (TCR) signaling without CD28 can elicit primary effector T cells, but memory T cells generated during this process are anergic, failing to respond to secondary antigen exposure. We show that, upon T cell activation, CD28 transiently promotes expression of carnitine palmitoyltransferase 1a (Cpt1a), an enzyme that facilitates mitochondrial fatty acid oxidation (FAO), before the first cell division, coinciding with mitochondrial elongation and enhanced spare respiratory capacity (SRC). microRNA-33 (miR33), a target of thioredoxin-interacting protein (TXNIP), attenuates Cpt1a expression in the absence of CD28, resulting in cells that thereafter are metabolically compromised during reactivation or periods of increased bioenergetic demand. Early CD28-dependent mitochondrial engagement is needed for T cells to remodel cristae, develop SRC, and rapidly produce cytokines upon restimulation-cardinal features of protective memory T cells. Our data show that initial CD28 signals during T cell activation prime mitochondria with latent metabolic capacity that is essential for future T cell responses.


Asunto(s)
Antígenos CD28/metabolismo , Activación de Linfocitos , Mitocondrias/metabolismo , Linfocitos T/citología , Linfocitos T/inmunología , Animales , Carnitina O-Palmitoiltransferasa , Inhibidores Enzimáticos/farmacología , Compuestos Epoxi/farmacología , Humanos , Interleucina-15/inmunología , Ratones , Ratones Endogámicos C57BL , Receptores de Antígenos de Linfocitos T/metabolismo , Estrés Fisiológico , Linfocitos T/metabolismo
11.
Nat Immunol ; 20(4): 420-432, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30858618

RESUMEN

The adoption of Warburg metabolism is critical for the activation of macrophages in response to lipopolysaccharide. Macrophages stimulated with lipopolysaccharide increase their expression of nicotinamide phosphoribosyltransferase (NAMPT), a key enzyme in NAD+ salvage, and loss of NAMPT activity alters their inflammatory potential. However, the events that lead to the cells' becoming dependent on NAD+ salvage remain poorly defined. We found that depletion of NAD+ and increased expression of NAMPT occurred rapidly after inflammatory activation and coincided with DNA damage caused by reactive oxygen species (ROS). ROS produced by complex III of the mitochondrial electron-transport chain were required for macrophage activation. DNA damage was associated with activation of poly(ADP-ribose) polymerase, which led to consumption of NAD+. In this setting, increased NAMPT expression allowed the maintenance of NAD+ pools sufficient for glyceraldehyde-3-phosphate dehydrogenase activity and Warburg metabolism. Our findings provide an integrated explanation for the dependence of inflammatory macrophages on the NAD+ salvage pathway.


Asunto(s)
Daño del ADN , Macrófagos/metabolismo , NAD/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Acrilamidas/farmacología , Animales , Células Cultivadas , Citocinas/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Células HEK293 , Humanos , Inflamación/metabolismo , Activación de Macrófagos , Macrófagos/efectos de los fármacos , Macrófagos/enzimología , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Piperidinas/farmacología
12.
Cell ; 165(7): 1708-1720, 2016 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-27264604

RESUMEN

In the mammalian intestine, crypts of Leiberkühn house intestinal epithelial stem/progenitor cells at their base. The mammalian intestine also harbors a diverse array of microbial metabolite compounds that potentially modulate stem/progenitor cell activity. Unbiased screening identified butyrate, a prominent bacterial metabolite, as a potent inhibitor of intestinal stem/progenitor proliferation at physiologic concentrations. During homeostasis, differentiated colonocytes metabolized butyrate likely preventing it from reaching proliferating epithelial stem/progenitor cells within the crypt. Exposure of stem/progenitor cells in vivo to butyrate through either mucosal injury or application to a naturally crypt-less host organism led to inhibition of proliferation and delayed wound repair. The mechanism of butyrate action depended on the transcription factor Foxo3. Our findings indicate that mammalian crypt architecture protects stem/progenitor cell proliferation in part through a metabolic barrier formed by differentiated colonocytes that consume butyrate and stimulate future studies on the interplay of host anatomy and microbiome metabolism.


Asunto(s)
Bacterias/metabolismo , Butiratos/metabolismo , Colon/citología , Colon/microbiología , Microbioma Gastrointestinal , Células Madre/metabolismo , Acil-CoA Deshidrogenasa/deficiencia , Acil-CoA Deshidrogenasa/genética , Animales , Proliferación Celular , Intestino Delgado/citología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Oxidación-Reducción , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Células Madre/citología , Pez Cebra
13.
Cell ; 166(1): 63-76, 2016 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-27293185

RESUMEN

Activated effector T (TE) cells augment anabolic pathways of metabolism, such as aerobic glycolysis, while memory T (TM) cells engage catabolic pathways, like fatty acid oxidation (FAO). However, signals that drive these differences remain unclear. Mitochondria are metabolic organelles that actively transform their ultrastructure. Therefore, we questioned whether mitochondrial dynamics controls T cell metabolism. We show that TE cells have punctate mitochondria, while TM cells maintain fused networks. The fusion protein Opa1 is required for TM, but not TE cells after infection, and enforcing fusion in TE cells imposes TM cell characteristics and enhances antitumor function. Our data suggest that, by altering cristae morphology, fusion in TM cells configures electron transport chain (ETC) complex associations favoring oxidative phosphorylation (OXPHOS) and FAO, while fission in TE cells leads to cristae expansion, reducing ETC efficiency and promoting aerobic glycolysis. Thus, mitochondrial remodeling is a signaling mechanism that instructs T cell metabolic programming.


Asunto(s)
Dinámicas Mitocondriales , Linfocitos T/citología , Linfocitos T/metabolismo , Animales , Diferenciación Celular , Transporte de Electrón , Ácidos Grasos/metabolismo , GTP Fosfohidrolasas/metabolismo , Glucólisis , Humanos , Memoria Inmunológica , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción , Transducción de Señal , Linfocitos T/inmunología
14.
Immunity ; 54(11): 2514-2530.e7, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34717796

RESUMEN

Human plasmacytoid dendritic cells (pDCs) are interleukin-3 (IL-3)-dependent cells implicated in autoimmunity, but the role of IL-3 in pDC biology is poorly understood. We found that IL-3-induced Janus kinase 2-dependent expression of SLC7A5 and SLC3A2, which comprise the large neutral amino acid transporter, was required for mammalian target of rapamycin complex 1 (mTORC1) nutrient sensor activation in response to toll-like receptor agonists. mTORC1 facilitated increased anabolic activity resulting in type I interferon, tumor necrosis factor, and chemokine production and the expression of the cystine transporter SLC7A11. Loss of function of these amino acid transporters synergistically blocked cytokine production by pDCs. Comparison of in vitro-activated pDCs with those from lupus nephritis lesions identified not only SLC7A5, SLC3A2, and SLC7A11 but also ectonucleotide pyrophosphatase-phosphodiesterase 2 (ENPP2) as components of a shared transcriptional signature, and ENPP2 inhibition also blocked cytokine production. Our data identify additional therapeutic targets for autoimmune diseases in which pDCs are implicated.


Asunto(s)
Sistemas de Transporte de Aminoácidos/genética , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Regulación de la Expresión Génica , Sistemas de Transporte de Aminoácidos/metabolismo , Autoinmunidad , Biomarcadores , Citocinas/genética , Citocinas/metabolismo , Susceptibilidad a Enfermedades , Metabolismo Energético , Humanos , Inmunidad , Transducción de Señal
15.
Cell ; 162(6): 1229-41, 2015 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-26321679

RESUMEN

Failure of T cells to protect against cancer is thought to result from lack of antigen recognition, chronic activation, and/or suppression by other cells. Using a mouse sarcoma model, we show that glucose consumption by tumors metabolically restricts T cells, leading to their dampened mTOR activity, glycolytic capacity, and IFN-γ production, thereby allowing tumor progression. We show that enhancing glycolysis in an antigenic "regressor" tumor is sufficient to override the protective ability of T cells to control tumor growth. We also show that checkpoint blockade antibodies against CTLA-4, PD-1, and PD-L1, which are used clinically, restore glucose in tumor microenvironment, permitting T cell glycolysis and IFN-γ production. Furthermore, we found that blocking PD-L1 directly on tumors dampens glycolysis by inhibiting mTOR activity and decreasing expression of glycolysis enzymes, reflecting a role for PD-L1 in tumor glucose utilization. Our results establish that tumor-imposed metabolic restrictions can mediate T cell hyporesponsiveness during cancer.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Glucólisis , Linfocitos Infiltrantes de Tumor/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral , Animales , Anticuerpos Monoclonales/administración & dosificación , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/inmunología , Linfocitos T CD8-positivos/inmunología , Antígeno CTLA-4/antagonistas & inhibidores , Antígeno CTLA-4/inmunología , Interferón gamma/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Ratones , Neoplasias/inmunología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología
16.
Nat Immunol ; 17(4): 364-8, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27002844

RESUMEN

T cells have a pivotal protective role in defense against infection and cancer but also are instrumental in the development of many autoimmune diseases. The regulation of nutrient uptake and utilization in T cells is critically important for the control of their differentiation, and manipulating metabolic pathways in these cells can alter their function and longevity. While the importance of T cell metabolic remodeling in different physiological settings is not fully understood, there is a growing realization that inappropriate metabolic remodeling underlies many aberrant immune responses and that manipulating cellular metabolism can beneficially enhance or temper immunity. Here we comment on the basic metabolic pathways in T cells, followed by a discussion on up-to-date findings about the relationship between metabolism and T cell function and longevity. Furthermore, we expand on potential approaches and applications in which T cells might be manipulated by the reprogramming of metabolic pathways for therapeutic purposes.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Inmunoterapia Adoptiva , Neoplasias/inmunología , Linfocitos T/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Enfermedades Autoinmunes/metabolismo , Diferenciación Celular/inmunología , Glucólisis , Humanos , Inmunoterapia , Redes y Vías Metabólicas , Neoplasias/metabolismo , Neoplasias/terapia , Fosforilación Oxidativa , Transducción de Señal , Linfocitos T/inmunología , Serina-Treonina Quinasas TOR/metabolismo , Microambiente Tumoral/inmunología
17.
Nat Immunol ; 17(6): 656-65, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27043409

RESUMEN

Group 2 innate lymphoid cells (ILC2s) regulate tissue inflammation and repair after activation by cell-extrinsic factors such as host-derived cytokines. However, the cell-intrinsic metabolic pathways that control ILC2 function are undefined. Here we demonstrate that expression of the enzyme arginase-1 (Arg1) during acute or chronic lung inflammation is a conserved trait of mouse and human ILC2s. Deletion of mouse ILC-intrinsic Arg1 abrogated type 2 lung inflammation by restraining ILC2 proliferation and dampening cytokine production. Mechanistically, inhibition of Arg1 enzymatic activity disrupted multiple components of ILC2 metabolic programming by altering arginine catabolism, impairing polyamine biosynthesis and reducing aerobic glycolysis. These data identify Arg1 as a key regulator of ILC2 bioenergetics that controls proliferative capacity and proinflammatory functions promoting type 2 inflammation.


Asunto(s)
Arginasa/metabolismo , Linfocitos/fisiología , Neumonía/inmunología , Animales , Arginasa/genética , Proliferación Celular/genética , Células Cultivadas , Citocinas/metabolismo , Glucólisis/genética , Humanos , Inmunidad Innata , Activación de Linfocitos/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Poliaminas/metabolismo , Células Th2/inmunología
18.
Cell ; 153(6): 1239-51, 2013 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-23746840

RESUMEN

A "switch" from oxidative phosphorylation (OXPHOS) to aerobic glycolysis is a hallmark of T cell activation and is thought to be required to meet the metabolic demands of proliferation. However, why proliferating cells adopt this less efficient metabolism, especially in an oxygen-replete environment, remains incompletely understood. We show here that aerobic glycolysis is specifically required for effector function in T cells but that this pathway is not necessary for proliferation or survival. When activated T cells are provided with costimulation and growth factors but are blocked from engaging glycolysis, their ability to produce IFN-γ is markedly compromised. This defect is translational and is regulated by the binding of the glycolysis enzyme GAPDH to AU-rich elements within the 3' UTR of IFN-γ mRNA. GAPDH, by engaging/disengaging glycolysis and through fluctuations in its expression, controls effector cytokine production. Thus, aerobic glycolysis is a metabolically regulated signaling mechanism needed to control cellular function.


Asunto(s)
Glucólisis , Activación de Linfocitos , Fosforilación Oxidativa , Linfocitos T/citología , Linfocitos T/metabolismo , Regiones no Traducidas 3' , Animales , Proliferación Celular , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Interferón gamma/genética , Listeria monocytogenes , Listeriosis/inmunología , Ratones , Ratones Endogámicos C57BL , Biosíntesis de Proteínas , Linfocitos T/inmunología
19.
Nature ; 610(7932): 555-561, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36171294

RESUMEN

CD4+ T cell differentiation requires metabolic reprogramming to fulfil the bioenergetic demands of proliferation and effector function, and enforce specific transcriptional programmes1-3. Mitochondrial membrane dynamics sustains mitochondrial processes4, including respiration and tricarboxylic acid (TCA) cycle metabolism5, but whether mitochondrial membrane remodelling orchestrates CD4+ T cell differentiation remains unclear. Here we show that unlike other CD4+ T cell subsets, T helper 17 (TH17) cells have fused mitochondria with tight cristae. T cell-specific deletion of optic atrophy 1 (OPA1), which regulates inner mitochondrial membrane fusion and cristae morphology6, revealed that TH17 cells require OPA1 for its control of the TCA cycle, rather than respiration. OPA1 deletion amplifies glutamine oxidation, leading to impaired NADH/NAD+ balance and accumulation of TCA cycle metabolites and 2-hydroxyglutarate-a metabolite that influences the epigenetic landscape5,7. Our multi-omics approach revealed that the serine/threonine kinase liver-associated kinase B1 (LKB1) couples mitochondrial function to cytokine expression in TH17 cells by regulating TCA cycle metabolism and transcriptional remodelling. Mitochondrial membrane disruption activates LKB1, which restrains IL-17 expression. LKB1 deletion restores IL-17 expression in TH17 cells with disrupted mitochondrial membranes, rectifying aberrant TCA cycle glutamine flux, balancing NADH/NAD+ and preventing 2-hydroxyglutarate production from the promiscuous activity of the serine biosynthesis enzyme phosphoglycerate dehydrogenase (PHGDH). These findings identify OPA1 as a major determinant of TH17 cell function, and uncover LKB1 as a sensor linking mitochondrial cues to effector programmes in TH17 cells.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Mitocondrias , Células Th17 , Glutamina/metabolismo , Interleucina-17/metabolismo , Mitocondrias/metabolismo , NAD/metabolismo , Fosfoglicerato-Deshidrogenasa/metabolismo , Serina/biosíntesis , Serina/metabolismo , Células Th17/citología , Células Th17/inmunología , Células Th17/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Ciclo del Ácido Cítrico , GTP Fosfohidrolasas/deficiencia , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo
20.
Genes Dev ; 34(21-22): 1503-1519, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33004416

RESUMEN

EBF1 and PAX5 mutations are associated with the development of B progenitor acute lymphoblastic leukemia (B-ALL) in humans. To understand the molecular networks driving leukemia in the Ebf1+/-Pax5+/- (dHet) mouse model for B-ALL, we interrogated the transcriptional profiles and chromatin status of leukemic cells, preleukemic dHet pro-B, and wild-type pro-B cells with the corresponding EBF1 and Pax5 cistromes. In dHet B-ALL cells, many EBF1 and Pax5 target genes encoding pre-BCR signaling components and transcription factors were down-regulated, whereas Myc and genes downstream from IL-7 signaling or associated with the folate pathway were up-regulated. We show that blockade of IL-7 signaling in vivo and methotrexate treatment of leukemic cells in vitro attenuate the expansion of leukemic cells. Single-cell RNA-sequencing revealed heterogeneity of leukemic cells and identified a subset of wild-type pro-B cells with reduced Ebf1 and enhanced Myc expression that show hallmarks of dHet B-ALL cells. Thus, EBF1 and Pax5 may safeguard early stage B cells from transformation to B-ALL by limiting IL-7 signaling, folate metabolism and Myc expression.


Asunto(s)
Ácido Fólico/metabolismo , Interleucina-7/fisiología , Factor de Transcripción PAX5/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/fisiopatología , Proteínas Proto-Oncogénicas c-myc/genética , Transducción de Señal/genética , Transactivadores/metabolismo , Animales , Carbono/metabolismo , Supervivencia Celular/genética , Transformación Celular Neoplásica/genética , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Ratones , Factor de Transcripción PAX5/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Células Precursoras de Linfocitos B/patología , Unión Proteica , Análisis de la Célula Individual , Transactivadores/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA