Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Xray Sci Technol ; 27(1): 1-16, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30400125

RESUMEN

BACKGROUND: Some patients cannot be imaged with cone-beam CT for image-guided radiation therapy because their size, pose, or fixation devices cause collisions with the machine. OBJECTIVE: To investigate imaging trajectories that avoid such collisions by using virtual isocenter and variable magnification during acquisition while yielding comparable image quality. METHODS: The machine components most likely to collide are the gantry and kV detector. A virtual isocenter trajectory continuously moves the patient during gantry rotation to maintain an increased separation between the two. With dynamic magnification, the kV detector is dynamically moved to increase clearance for an angular range around the potential collision point while acquiring sufficient data to maintain the field-of-view. Both strategies were used independently and jointly with the resultant image quality evaluated against the standard circular acquisition. RESULTS: Collision avoiding trajectories show comparable contrast and resolution to standard techniques. For an anthropomorphic phantom, the RMSE is <7×10- 4, multi-scale structural similarity index is >0.97, and visual image fidelity is >0.96 for all trajectories when compared to a standard circular scan. CONCLUSIONS: The proposed trajectories avoid machine-patient collisions while providing comparable image quality to the current standard thereby enabling CBCT imaging for patients that could not otherwise be scanned.


Asunto(s)
Tomografía Computarizada de Haz Cónico/métodos , Radioterapia Guiada por Imagen/métodos , Tomografía Computarizada de Haz Cónico/instrumentación , Humanos , Aceleradores de Partículas/instrumentación , Fantasmas de Imagen , Planificación de la Radioterapia Asistida por Computador , Radioterapia Guiada por Imagen/instrumentación
2.
Med Phys ; 48(9): 4944-4954, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34255871

RESUMEN

PURPOSE: Inkjet printers can be used to fabricate anthropomorphic phantoms by the use of iodine-doped ink. However, challenges persist in implementing this technique. The calibration from grayscale to ink density is complex and time-consuming. The purpose of this work is to develop a printing methodology that requires a simpler calibration and is less dependent on printer characteristics to produce the desired range of x-ray attenuation values. METHODS: Conventional grayscale printing was substituted by single-tone printing; that is, the superposition of pure black layers of iodinated ink. Printing was performed with a consumer-grade inkjet printer using ink made of potassium-iodide (KI) dissolved in water at 1 g/ml. A calibration for the attenuation of ink was measured using a commercial x-ray system at 70 kVp. A neonate radiograph obtained at 70 kVp served as an anatomical model. The attenuation map of the neonate radiograph was processed into a series of single-tone images. Single-tone images were printed, stacked, and imaged at 70 kVp. The phantom was evaluated by comparing attenuation values between the printed phantom and the original radiograph; attenuation maps were compared using the structural similarity index measure (SSIM), while attenuation histograms were compared using the Kullback-Leibler (KL) divergence. A region of interest (ROI)-based analysis was also performed, where the attenuation distribution within given ROIs was compared between phantom and patient. The phantom sharpness was evaluated in terms of modulation transfer function (MTF) estimates and signal spread profiles of high spatial resolution features in the image. RESULTS: The printed phantom required 36 pages. The printing queue was automated and it took about 2 h to print the phantom. The radiograph of the printed phantom demonstrated a close resemblance to the original neonate radiograph. The SSIM of the phantom with respect to that of the patient was 0.53. Both patient and phantom attenuation histograms followed similar distributions, and the KL divergence between such histograms was 0.20. The ROI-based analysis showed that the largest deviations from patient attenuation values were observed at the higher and lower ends of the attenuation range. The limiting resolution of the proposed methodology was about 1 mm. CONCLUSION: A methodology to generate a neonate phantom for 2D imaging applications, using single-tone printing, was developed. This method only requires a single-value calibration and required less than 2 h to print a complete phantom.


Asunto(s)
Modelos Anatómicos , Impresión Tridimensional , Calibración , Humanos , Recién Nacido , Fantasmas de Imagen , Radiografía , Rayos X
3.
Med Phys ; 42(11): 6448-56, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26520734

RESUMEN

PURPOSE: This work presents a method of collision predictions for external beam radiotherapy using surface imaging. The present methodology focuses on collision prediction during treatment simulation to evaluate the clearance of a patient's treatment position and allow for its modification if necessary. METHODS: A Kinect camera (Microsoft, Redmond, WA) is used to scan the patient and immobilization devices in the treatment position at the simulator. The surface is reconstructed using the skanect software (Occipital, Inc., San Francisco, CA). The treatment isocenter is marked using simulated orthogonal lasers projected on the surface scan. The point cloud of this surface is then shifted to isocenter and converted from Cartesian to cylindrical coordinates. A slab models the treatment couch. A cylinder with a radius equal to the normal distance from isocenter to the collimator plate, and a height defined by the collimator diameter is used to estimate collisions. Points within the cylinder clear through a full gantry rotation with the treatment couch at 0°, while points outside of it collide. The angles of collision are reported. This methodology was experimentally verified using a mannequin positioned in an alpha cradle with both arms up. A planning CT scan of the mannequin was performed, two isocenters were marked in pinnacle, and this information was exported to AlignRT (VisionRT, London, UK)--a surface imaging system for patient positioning. This was used to ensure accurate positioning of the mannequin in the treatment room, when available. Collision calculations were performed for the two treatment isocenters and the results compared to the collisions detected the room. The accuracy of the Kinect-Skanect surface was evaluated by comparing it to the external surface of the planning CT scan. RESULTS: Experimental verification results showed that the predicted angles of collision matched those recorded in the room within 0.5°, in most cases (largest deviation -1.2°). The accuracy study for the Kinect-Skanect surface showed an average discrepancy between the CT external contour and the surface scan of 2.2 mm. CONCLUSIONS: This methodology provides fast and reliable collision predictions using surface imaging. The use of the Kinect-Skanect system allows for a comprehensive modeling of the patient topography including all the relevant anatomy and immobilization devices that may lead to collisions. The use of this tool at the treatment simulation stage may allow therapists to evaluate the clearance of a patient's treatment position and optimize it before the planning CT scan is performed. This can allow for safer treatments for the patients due to better collision predictions and improved clinical workflow by minimizing replanning and resimulations due to unforeseen clearance issues.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Posicionamiento del Paciente/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Radioterapia Guiada por Imagen/métodos , Programas Informáticos , Imagen de Cuerpo Entero/métodos , Algoritmos , Humanos , Aumento de la Imagen/métodos , Imagenología Tridimensional/métodos , Seguridad del Paciente , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Validación de Programas de Computación , Técnica de Sustracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA