Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 24(46): 28242-28249, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36382502

RESUMEN

Radicals serve as a source of polarization in dynamic nuclear polarization, but may also act as polarization sink, in particular at low field. Additionally, if the couplings between the electron spins and different nuclear reservoirs are stronger than any of the reservoirs' couplings to the lattice, radicals can mediate hetero-nuclear polarization transfer. Here, we report radical-enhanced 13C relaxation in pyruvic acid doped with trityl. Up to 40 K, we find a linear carbon T1 field dependence between 5 mT and 2 T. We model the dependence quantitatively, and find that the presence of trityl accelerates direct hetero-nuclear polarization transfer at low fields, while at higher fields 13C relaxation is diffusion limited. Measurements of hetero-nuclear polarization transfer up to 600 mT confirm the predicted radical-mediated proton-carbon mixing.

2.
Chemphyschem ; 17(19): 3035-3039, 2016 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-27305629

RESUMEN

At ultralow temperatures, longitudinal nuclear magnetic relaxation times become exceedingly long and spectral lines are very broad. These facts pose particular challenges for the measurement of NMR spectra and spin relaxation phenomena. Nuclear spin noise spectroscopy is used to monitor proton spin polarization buildup to thermal equilibrium of a mixture of glycerol, water, and copper oxide nanoparticles at 17.5 mK in a static magnetic field of 2.5 T. Relaxation times determined in such a way are essentially free from perturbations caused by excitation radiofrequency pulses, radiation damping, and insufficient excitation bandwidth. The experimental spin-lattice relaxation times determined on resonance by saturation recovery with spin noise detection are consistently longer than those determined by using pulse excitation. These longer values are in better accordance with the expected field dependence trend than those obtained by on-resonance experiments with pulsed excitation.

3.
Phys Chem Chem Phys ; 18(28): 19173-82, 2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27362505

RESUMEN

We detail the process of low-field thermal mixing (LFTM) between (1)H and (13)C nuclei in neat [1-(13)C] pyruvic acid at cryogenic temperatures (4-15 K). Using fast-field-cycling NMR, (1)H nuclei in the molecule were polarized at modest high field (2 T) and then equilibrated with (13)C nuclei by fast cycling (∼300-400 ms) to a low field (0-300 G) that activates thermal mixing. The (13)C NMR spectrum was recorded after fast cycling back to 2 T. The (13)C signal derives from (1)H polarization via LFTM, in which the polarized ('cold') proton bath contacts the unpolarised ('hot') (13)C bath at a field so low that Zeeman and dipolar interactions are similar-sized and fluctuations in the latter drive (1)H-(13)C equilibration. By varying mixing time (tmix) and field (Bmix), we determined field-dependent rates of polarization transfer (1/τ) and decay (1/T1m) during mixing. This defines conditions for effective mixing, as utilized in 'brute-force' hyperpolarization of low-γ nuclei like (13)C using Boltzmann polarization from nearby protons. For neat pyruvic acid, near-optimum mixing occurs for tmix∼ 100-300 ms and Bmix∼ 30-60 G. Three forms of frozen neat pyruvic acid were tested: two glassy samples, (one well-deoxygenated, the other O2-exposed) and one sample pre-treated by annealing (also well-deoxygenated). Both annealing and the presence of O2 are known to dramatically alter high-field longitudinal relaxation (T1) of (1)H and (13)C (up to 10(2)-10(3)-fold effects). Here, we found smaller, but still critical factors of ∼(2-5)× on both τ and T1m. Annealed, well-deoxygenated samples exhibit the longest time constants, e.g., τ∼ 30-70 ms and T1m∼ 1-20 s, each growing vs. Bmix. Mixing 'turns off' for Bmix > ∼100 G. That T1m≫τ is consistent with earlier success with polarization transfer from (1)H to (13)C by LFTM.

4.
Phys Chem Chem Phys ; 18(36): 25764, 2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27603570

RESUMEN

Correction for 'Low-field thermal mixing in [1-(13)C] pyruvic acid for brute-force hyperpolarization' by David T. Peat et al., Phys. Chem. Chem. Phys., 2016, 18, 19173-19182.

5.
Phys Chem Chem Phys ; 15(20): 7586-91, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23588269

RESUMEN

Many approaches are now available for achieving high levels of nuclear spin polarization. One of these methods is based on the notion that as the temperature is reduced, the equilibrium nuclear polarization will increase, according to the Boltzmann distribution. The main problem with this approach is the length of time it may take to approach thermal equilibrium at low temperatures, since nuclear relaxation times (characterized by the spin-lattice relaxation time T1) can become very long. Here, we show, by means of relaxation time measurements of frozen solutions, that selected lanthanide ions, in the form of their chelates with DTPA, can act as effective relaxation agents at low temperatures. Differential effects are seen with the different lanthanides that were tested, holmium and dysprosium showing highest relaxivity, while gadolinium is ineffective at temperatures of 20 K and below. These observations are consistent with the known electron-spin relaxation time characteristics of these lanthanides. The maximum relaxivity occurs at around 10 K for Ho-DTPA and 20 K for Dy-DTPA. Moreover, these two agents show only modest relaxivity at room temperature, and can thus be regarded as relaxation switches. We conclude that these agents can speed up solid state NMR experiments by reducing the T1 values of the relevant nuclei, and hence increasing the rate at which data can be acquired. They could also be of value in the context of a simple low-cost method of achieving several-hundred-fold improvements in polarization for experiments in which samples are pre-polarized at low temperatures, then rewarmed and dissolved immediately prior to analysis.


Asunto(s)
Elementos de la Serie de los Lantanoides/química , Ácido Pentético/química , Temperatura , Espectroscopía de Resonancia Magnética/normas , Estándares de Referencia
6.
Phys Chem Chem Phys ; 15(25): 10413-7, 2013 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-23681204

RESUMEN

Nuclear magnetic resonance (NMR) techniques are extensively used in many areas of basic and clinical research, as well as in diagnostic medicine. However, NMR signals are intrinsically weak, and this imposes substantial constraints on the amounts and concentrations of materials that can be detected. The signals are weak because of the low energies characteristic of NMR and the resulting very low (typically 0.0001-0.01%) polarization of the nuclear spins. Here, we show that exposure to very low temperatures and high magnetic fields, in conjunction with nanoparticle-mediated relaxation enhancement, can be used to generate extremely high nuclear polarization levels on a realistic timescale; with copper nanoparticles at 15 mK and 14 T, (13)C polarization grew towards its equilibrium level of 23% with an estimated half-time of about 60 hours. This contrasts with a (13)C half-time of at least one year in the presence of aluminium nanoparticles. Cupric oxide nanoparticles were also effective relaxation agents. Our findings lead us to suspect that the relaxation may be mediated, at least in part, by the remarkable magnetic properties that some nanoparticle preparations can display. This methodology offers prospects for achieving polarization levels of 10-50% or more for many nuclear species, with a wide range of potential applications in structural biology and medicine.


Asunto(s)
Nanopartículas del Metal/química , Aluminio/química , Isótopos de Carbono/química , Cobre/química , Campos Magnéticos , Espectroscopía de Resonancia Magnética , Temperatura
7.
J Phys Chem Lett ; 13(44): 10370-10376, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36316011

RESUMEN

In dynamic nuclear polarization (DNP), radicals such as trityl provide a source for high nuclear spin polarization. Conversely, during the low-field transfer of hyperpolarized solids, the radicals' dipolar or Non-Zeeman reservoir may act as a powerful nuclear polarization sink. Here, we report the low-temperature proton spin relaxation in pyruvic acid doped with trityl, for fields from 5 mT to 2 T. We estimate the heat capacity of the radical Non-Zeeman reservoir experimentally and show that a recent formalism by Wenckebach yields a parameter-free, yet quantitative model for the entire field range.


Asunto(s)
Protones , Ácido Pirúvico , Compuestos de Sulfhidrilo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA