Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Virol ; 91(20)2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28724769

RESUMEN

Baboons naturally infected with simian T lymphotropic virus (STLV) are a potentially useful model system for the study of vaccination against human T lymphotropic virus (HTLV). Here we expanded the number of available full-length baboon STLV-1 sequences from one to three and related the T cell responses that recognize the immunodominant Tax protein to the tax sequences present in two individual baboons. Continuously growing T cell lines were established from two baboons, animals 12141 and 12752. Next-generation sequencing (NGS) of complete STLV genome sequences from these T cell lines revealed them to be closely related but distinct from each other and from the baboon STLV-1 sequence in the NCBI sequence database. Overlapping peptides corresponding to each unique Tax sequence and to the reference baboon Tax sequence were used to analyze recognition by T cells from each baboon using intracellular cytokine staining (ICS). Individual baboons expressed more gamma interferon and tumor necrosis factor alpha in response to Tax peptides corresponding to their own STLV-1 sequence than in response to Tax peptides corresponding to the reference baboon STLV-1 sequence. Thus, our analyses revealed distinct but closely related STLV-1 genome sequences in two baboons, extremely low heterogeneity of STLV sequences within each baboon, no evidence for superinfection within each baboon, and a ready ability of T cells in each baboon to recognize circulating Tax sequences. While amino acid substitutions that result in escape from CD8+ T cell recognition were not observed, premature stop codons were observed in 7% and 56% of tax sequences from peripheral blood mononuclear cells from animals 12141 and 12752, respectively.IMPORTANCE It has been estimated that approximately 100,000 people suffer serious morbidity and 10,000 people die each year from the consequences associated with human T lymphotropic virus (HTLV) infection. There are no antiviral drugs and no preventive vaccine. A preventive vaccine would significantly impact the global burden associated with HTLV infections. Here we provide fundamental information on the simian T lymphotropic virus (STLV) naturally transmitted in a colony of captive baboons. The limited viral sequence heterogeneity in individual baboons, the identity of the viral gene product that is the major target of cellular immune responses, the persistence of viral amino acid sequences that are the major targets of cellular immune responses, and the emergence in vivo of truncated variants in the major target of cellular immune responses all parallel what are seen with HTLV infection of humans. These results justify the use of STLV-infected baboons as a model system for vaccine development efforts.


Asunto(s)
Productos del Gen tax/química , Productos del Gen tax/genética , Infecciones por HTLV-I/virología , Virus Linfotrópico T Tipo 1 de los Simios/aislamiento & purificación , Linfocitos T/inmunología , Sustitución de Aminoácidos , Animales , ADN Viral/genética , Productos del Gen tax/inmunología , Genoma Viral , Infecciones por HTLV-I/inmunología , Infecciones por HTLV-I/transmisión , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunidad Celular , Interferón gamma/biosíntesis , Interferón gamma/inmunología , Papio anubis , Filogenia , Reacción en Cadena de la Polimerasa , Virus Linfotrópico T Tipo 1 de los Simios/inmunología , Linfocitos T/virología , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/inmunología
2.
J Virol ; 90(11): 5280-5291, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-26984729

RESUMEN

UNLABELLED: There are currently 5 million to 10 million human T-lymphotropic virus type 1 (HTLV-1)-infected people, and many of them will develop severe complications resulting from this infection. A vaccine is urgently needed in areas where HTLV-1 is endemic. Many vaccines are best tested in nonhuman primate animal models. As a first step in designing an effective HTLV-1 vaccine, we defined the CD8(+) and CD4(+) T cell response against simian T-lymphotropic virus type 1 (STLV-1), a virus closely related to HTLV-1, in olive baboons (Papio anubis). Consistent with persistent antigenic exposure, we observed that STLV-1-specific CD8(+) T cells displayed an effector memory phenotype and usually expressed CD107a, gamma interferon (IFN-γ), and tumor necrosis factor alpha (TNF-α). To assess the viral targets of the cellular immune response in STLV-1-infected animals, we used intracellular cytokine staining to detect responses against overlapping peptides covering the entire STLV-1 proteome. Our results show that, similarly to humans, the baboon CD8(+) T cell response narrowly targeted the Tax protein. Our findings suggest that the STLV-1-infected baboon model may recapitulate some of the important aspects of the human response against HTLV-1 and could be an important tool for the development of immune-based therapy and prophylaxis. IMPORTANCE: HTLV-1 infection can lead to many different and often fatal conditions. A vaccine deployed in areas of high prevalence might reduce the incidence of HTLV-1-induced disease. Unfortunately, there are very few animal models of HTLV-1 infection useful for testing vaccine approaches. Here we describe cellular immune responses in baboons against a closely related virus, STLV-1. We show for the first time that the immune response against STLV-1 in naturally infected baboons is largely directed against the Tax protein. Similar findings in humans and the sequence similarity between the human and baboon viruses suggest that the STLV-1-infected baboon model might be useful for developing a vaccine against HTLV-1.


Asunto(s)
Infecciones por Deltaretrovirus/inmunología , Productos del Gen tax/inmunología , Inmunidad Celular , Virus Linfotrópico T Tipo 1 de los Simios/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Infecciones por Deltaretrovirus/virología , Modelos Animales de Enfermedad , Descubrimiento de Drogas , Humanos , Memoria Inmunológica , Interferón gamma/genética , Papio , Proteoma , Factor de Necrosis Tumoral alfa/genética , Carga Viral , Vacunas Virales/inmunología
3.
J Virol ; 88(22): 13231-9, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25187550

RESUMEN

UNLABELLED: Since the 1960s, simian hemorrhagic fever virus (SHFV; Nidovirales, Arteriviridae) has caused highly fatal outbreaks of viral hemorrhagic fever in captive Asian macaque colonies. However, the source(s) of these outbreaks and the natural reservoir(s) of this virus remain obscure. Here we report the identification of two novel, highly divergent simian arteriviruses related to SHFV, Mikumi yellow baboon virus 1 (MYBV-1) and Southwest baboon virus 1 (SWBV-1), in wild and captive baboons, respectively, and demonstrate the recent transmission of SWBV-1 among captive baboons. These findings extend our knowledge of the genetic and geographic diversity of the simian arteriviruses, identify baboons as a natural host of these viruses, and provide further evidence that baboons may have played a role in previous outbreaks of simian hemorrhagic fever in macaques, as has long been suspected. This knowledge should aid in the prevention of disease outbreaks in captive macaques and supports the growing body of evidence that suggests that simian arterivirus infections are common in Old World monkeys of many different species throughout Africa. IMPORTANCE: Historically, the emergence of primate viruses both in humans and in other primate species has caused devastating outbreaks of disease. One strategy for preventing the emergence of novel primate pathogens is to identify microbes with the potential for cross-species transmission in their natural state within reservoir species from which they might emerge. Here, we detail the discovery and characterization of two related simian members of the Arteriviridae family that have a history of disease emergence and host switching. Our results expand the phylogenetic and geographic range of the simian arteriviruses and define baboons as a natural host for these viruses. Our findings also identify a potential threat to captive macaque colonies by showing that simian arteriviruses are actively circulating in captive baboons.


Asunto(s)
Arteriviridae/clasificación , Arteriviridae/aislamiento & purificación , Enfermedades de los Monos/virología , Infecciones por Virus ARN/veterinaria , Animales , Animales Salvajes , Animales de Zoológico , Arteriviridae/genética , Femenino , Variación Genética , Masculino , Datos de Secuencia Molecular , Papio , Filogeografía , Infecciones por Virus ARN/virología , ARN Viral/genética , Análisis de Secuencia de ADN , Topografía Médica
4.
Comp Med ; 73(1): 45-57, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36744555

RESUMEN

The study of nonhuman primates (NHP) can provide significant insights into our understanding numerous infectious agents. The etiological agent of COVID-19, SARS-CoV-2 virus, first emerged in 2019 and has so far been responsible for the deaths of over 4 million people globally. In the frenzied search to understand its pathogenesis and immunology and to find measures for prevention and control of this pandemic disease, NHP, particularly macaques, are the preferred model because they manifest similar clinical signs and immunologic features as humans. However, possible latent, subclinical, and opportunistic infections not previously detected in animals participating in a study may obscure experimental results and confound data interpretations in testing treatments and vaccine studies for COVID-19. Certain pathophysiologic changes that occur with SARS-CoV-2 virus infection are similar to those of simian pathogens. The current review discusses numerous coinfections of COVID-19 with other diseases and describes possible outcomes and mechanisms in COVID-19 studies of NHP that have coinfections. Due to the urgency triggered by the pandemic, screening that is more rigorous than usual is necessary to limit background noise and maximize the reliability of data from NHP COVID-19 studies. Screening for influenza virus, selected respiratory bacteria, and regional endemic pathogens such as vector-borne agents, together with the animal's individual exposure history, should be the main considerations in selecting a NHP for a COVID-19 study. In addition, because NHP are susceptible to the SARS-CoV-2 virus, management and surveillance measures should be established to prevent transmission to healthy animals from infected colony animals and husbandry staff. This review presents compiled data on the use of NHP in COVID-19 studies, emphasizing the need to create the most reliable NHP model for those studies by extensive screening for other pathogens.


Asunto(s)
COVID-19 , Coinfección , Humanos , Animales , SARS-CoV-2 , Reproducibilidad de los Resultados , Primates
5.
J Med Primatol ; 41(5): 325-8, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22882638

RESUMEN

BACKGROUND: The rhesus enteric caliciviruses (ReCVs) were recently described. METHODS: Prevalence of ReCV antibodies was tested in six species of captive non-human primates. RESULTS: High ReCV seroprevalence was revealed in rhesus and cynomolgus macaques. CONCLUSIONS: High rates of ReCV seroprevalence and diarrhea in juvenile macaques suggest that ReCVs may play a role in morbidity.


Asunto(s)
Enfermedades del Simio Antropoideo/epidemiología , Infecciones por Caliciviridae/veterinaria , Callithrix/virología , Catarrinos/virología , Diarrea/veterinaria , Enfermedades de los Monos/epidemiología , Animales , Infecciones por Caliciviridae/epidemiología , Diarrea/mortalidad , Diarrea/virología , Femenino , Incidencia , Masculino , Prevalencia
6.
Virology ; 474: 186-98, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25463617

RESUMEN

Simian hemorrhagic fever virus is an arterivirus that naturally infects species of African nonhuman primates causing acute or persistent asymptomatic infections. Although it was previously estimated that 1% of baboons are SHFV-positive, more than 10% of wild-caught and captive-bred baboons tested were SHFV positive and the infections persisted for more than 10 years with detectable virus in the blood (100-1000 genomes/ml). The sequences of two baboon SHFV isolates that were amplified by a single passage in primary macaque macrophages had a high degree of identity to each other as well as to the genome of SHFV-LVR, a laboratory strain isolated in the 1960s. Infection of Japanese macaques with 100PFU of a baboon isolate consistently produced high level viremia, pro-inflammatory cytokines, elevated tissue factor levels and clinical signs indicating coagulation defects. The baboon virus isolate provides a reliable BSL2 model of viral hemorrhagic fever disease in macaques.


Asunto(s)
Infecciones por Arterivirus/veterinaria , Arterivirus/aislamiento & purificación , Arterivirus/patogenicidad , Fiebres Hemorrágicas Virales/veterinaria , Enfermedades de los Monos/virología , Papio/virología , Animales , Arterivirus/genética , Infecciones por Arterivirus/patología , Infecciones por Arterivirus/virología , Citocinas/sangre , Genoma Viral , Fiebres Hemorrágicas Virales/patología , Fiebres Hemorrágicas Virales/virología , Interacciones Huésped-Patógeno , Macaca , Enfermedades de los Monos/inmunología , Enfermedades de los Monos/patología , Especificidad de Órganos , Viremia/veterinaria , Viremia/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA