Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Bioorg Med Chem Lett ; 27(22): 5014-5021, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29032026

RESUMEN

The continued emergence of bacteria resistant to current standard of care antibiotics presents a rapidly growing threat to public health. New chemical entities (NCEs) to treat these serious infections are desperately needed. Herein we report the discovery, synthesis, SAR and in vivo efficacy of a novel series of 4-hydroxy-2-pyridones exhibiting activity against Gram-negative pathogens. Compound 1c, derived from the N-debenzylation of 1b, preferentially inhibits bacterial DNA synthesis as determined by standard macromolecular synthesis assays. The structural features of the 4-hydroxy-2-pyridone scaffold required for antibacterial activity were explored and compound 6q, identified through further optimization of the series, had an MIC90 value of 8 µg/mL against a panel of highly resistant strains of E. coli. In a murine septicemia model, compound 6q exhibited a PD50 of 8 mg/kg in mice infected with a lethal dose of E. coli. This novel series of 4-hydroxy-2-pyridones serves as an excellent starting point for the identification of NCEs treating Gram-negative infections.


Asunto(s)
Antibacterianos/metabolismo , Compuestos de Azabiciclo/química , ADN/metabolismo , Niacina/análogos & derivados , Piridinas/química , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Compuestos de Azabiciclo/metabolismo , Compuestos de Azabiciclo/farmacología , Compuestos de Azabiciclo/uso terapéutico , ADN/química , Evaluación Preclínica de Medicamentos , Escherichia coli/efectos de los fármacos , Escherichia coli/patogenicidad , Bacterias Gramnegativas/efectos de los fármacos , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/veterinaria , Semivida , Ratones , Pruebas de Sensibilidad Microbiana , Niacina/metabolismo , Niacina/farmacología , Niacina/uso terapéutico , Piridinas/metabolismo , Piridinas/farmacología , Piridinas/uso terapéutico , Relación Estructura-Actividad
2.
Artículo en Inglés | MEDLINE | ID: mdl-21505237

RESUMEN

The rational design of novel antibiotics for bacteria involves the identification of inhibitors for enzymes involved in essential biochemical pathways in cells. In this study, the cloning, expression, purification, crystallization and structure of the enzyme peptidyl-tRNA hydrolase from Francisella tularensis, the causative agent of tularemia, was performed. The structure of F. tularensis peptidyl-tRNA hydrolase is comparable to those of other bacterial peptidyl-tRNA hydrolases, with most residues in the active site conserved amongst the family. The resultant reagents, structural data and analyses provide essential information for the structure-based design of novel inhibitors for this class of proteins.


Asunto(s)
Hidrolasas de Éster Carboxílico/química , Francisella tularensis/enzimología , Cristalografía por Rayos X , Modelos Moleculares , Estructura Terciaria de Proteína
3.
J Med Chem ; 61(10): 4456-4475, 2018 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-29727185

RESUMEN

There exists an urgent medical need to identify new chemical entities (NCEs) targeting multidrug resistant (MDR) bacterial infections, particularly those caused by Gram-negative pathogens. 4-Hydroxy-2-pyridones represent a novel class of nonfluoroquinolone inhibitors of bacterial type II topoisomerases active against MDR Gram-negative bacteria. Herein, we report on the discovery and structure-activity relationships of a series of fused indolyl-containing 4-hydroxy-2-pyridones with improved in vitro antibacterial activity against fluoroquinolone resistant strains. Compounds 6o and 6v are representative of this class, targeting both bacterial DNA gyrase and topoisomerase IV (Topo IV). In an abbreviated susceptibility screen, compounds 6o and 6v showed improved MIC90 values against Escherichia coli (0.5-1 µg/mL) and Acinetobacter baumannii (8-16 µg/mL) compared to the precursor compounds. In a murine septicemia model, both compounds showed complete protection in mice infected with a lethal dose of E. coli.


Asunto(s)
Antibacterianos/farmacología , ADN-Topoisomerasas de Tipo II/química , Descubrimiento de Drogas , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Sepsis/tratamiento farmacológico , Inhibidores de Topoisomerasa II/farmacología , Animales , Antibacterianos/química , Femenino , Ratones , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Conformación Proteica , Piridinas/química , Sepsis/microbiología , Relación Estructura-Actividad , Inhibidores de Topoisomerasa II/química
4.
Proteins ; 68(1): 313-23, 2007 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-17427952

RESUMEN

Apurinic/apyrimidinic endonuclease (APE-1) is essential for base excision repair (BER) of damaged DNA. Here molecular dynamics (MD) simulations of APE1 complexed with cleaved and uncleaved damaged DNA were used to determine the role and position of the metal ion(s) in the active site before and after DNA cleavage. The simulations started from an energy minimized wild-type structure of the metal-free APE1/damaged-DNA complex (1DE8). A grid search with one Mg2+ ion located two low energy clusters of Mg2+ consistent with the experimentally determined metal ion positions. At the start of the longer MD simulations, Mg2+ ions were placed at different positions as seen in the crystal structures and the movement of the ion was followed over the course of the trajectory. Our analysis suggests a "moving metal mechanism" in which one Mg2+ ion moves from the B- (more buried) to the A-site during substrate cleavage. The anticipated inversion of the phosphate oxygens occurs during the in-line cleavage reaction. Experimental results, which show competition between Ca2+ and Mg2+ for catalyzing the reaction, and high concentrations of Mg2+ are inhibitory, indicate that both sites cannot be simultaneously occupied for maximal activity.


Asunto(s)
Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , ADN/metabolismo , Magnesio/metabolismo , Modelos Moleculares , Simulación por Computador , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Humanos
5.
Toxicology ; 224(1-2): 44-55, 2006 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-16730871

RESUMEN

DNA single-strand breaks (SSB) activate poly (ADP-ribose) polymerase 1 (PARP1), which then polymerizes ADP-ribosyl groups on various nuclear proteins, consuming cellular energy. Although PARP1 has a role in repairing SSB, activation of PARP1 also causes necrosis and inflammation due to depletion of cellular energy. Here we show that the major mammalian apurinic/apyrimidinic (AP) endonuclease-1 (APE1), an essential DNA repair protein, binds to SSB and suppresses the activation of PARP1. APE1's high affinity for SSB requires Arg177, which is unique in mammalian APEs. PARP1's binding to the cleaved DNA was inhibited, and PARP1 activation was suppressed by the wild-type APE1, but not by the R177A mutant APE1 protein. Cells transiently transfected with the wild-type APE1 decreased the PARP1 activation after H2O2 treatment, while such suppression did not occur with the expression of the R177A APE1 mutant. These results suggest that APE1 suppresses the activation of PARP1 during the repair process of the DNA damage generated by oxidative stress, which may have an important implication for cells to avoid necrosis due to energy depletion.


Asunto(s)
Daño del ADN/fisiología , Reparación del ADN/fisiología , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Animales , Unión Competitiva , Línea Celular , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Ensayo de Cambio de Movilidad Electroforética , Activación Enzimática/fisiología , Células HeLa , Humanos , Ratones , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/genética , Proteínas/metabolismo , Transfección
7.
Proc Natl Acad Sci U S A ; 102(47): 17225-30, 2005 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-16282373

RESUMEN

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of photosynthetic CO(2) fixation and, thus, limits agricultural productivity. However, Rubisco enzymes from different species have different catalytic constants. If the structural basis for such differences were known, a rationale could be developed for genetically engineering an improved enzyme. Residues at the bottom of the large-subunit alpha/beta-barrel active site of Rubisco from the green alga Chlamydomonas reinhardtii (methyl-Cys-256, Lys-258, and Ile-265) were previously changed through directed mutagenesis and chloroplast transformation to residues characteristic of land-plant Rubisco (Phe-256, Arg-258, and Val-265). The resultant enzyme has decreases in carboxylation efficiency and CO(2)/O(2) specificity, despite the fact that land-plant Rubisco has greater specificity than the Chlamydomonas enzyme. Because the residues are close to a variable loop between beta-strands A and B of the small subunit that can also affect catalysis, additional substitutions were created at this interface. When large-subunit Val-221 and Val-235 were changed to land-plant Cys-221 and Ile-235, they complemented the original substitutions and returned CO(2)/O(2) specificity to the normal level. Further substitution with the shorter betaA-betaB loop of the spinach small subunit caused a 12-17% increase in specificity. The enhanced CO(2)/O(2) specificity of the mutant enzyme is lower than that of the spinach enzyme, but the carboxylation and oxygenation kinetic constants are nearly indistinguishable from those of spinach and substantially different from those of Chlamydomonas Rubisco. Thus, this interface between large and small subunits, far from the active site, contributes significantly to the differences in catalytic properties between algal and land-plant Rubisco enzymes.


Asunto(s)
Sustitución de Aminoácidos/genética , Chlamydomonas reinhardtii/enzimología , Chlamydomonas reinhardtii/genética , Mutagénesis Sitio-Dirigida , Ribulosa-Bifosfato Carboxilasa/genética , Ribulosa-Bifosfato Carboxilasa/metabolismo , Spinacia oleracea/enzimología , Animales , Catálisis , Cinética , Mutación , Fenotipo , Ribulosa-Bifosfato Carboxilasa/fisiología , Temperatura
8.
Biochemistry ; 44(29): 9851-61, 2005 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-16026157

RESUMEN

Comparison of subunit sequences and X-ray crystal structures of ribulose-1,5-bisphosphate carboxylase/oxygenase indicates that the loop between beta-strands A and B of the small subunit is one of the most variable regions of the holoenzyme. In prokaryotes and nongreen algae, the loop contains 10 residues. In land plants and green algae, the loop is comprised of approximately 22 and 28 residues, respectively. Previous studies indicated that the longer betaA-betaB loop was required for the assembly of cyanobacterial small subunits with plant large subunits in isolated chloroplasts. In the present study, chimeric small subunits were constructed by replacing the loop of the green alga Chlamydomonas reinhardtii with the sequences of Synechococcus or spinach. When these engineered genes were transformed into a Chlamydomonas mutant that lacks small-subunit genes, photosynthesis-competent colonies were recovered, indicating that loop size is not essential for holoenzyme assembly. Whereas the Synechococcus loop causes decreases in carboxylation V(max), K(m)(O(2)), and CO(2)/O(2) specificity, the spinach loop causes complementary decreases in carboxylation V(max), K(m)(O(2)), and K(m)(CO(2)) without a change in specificity. X-ray crystal structures of the engineered proteins reveal remarkable similarity between the introduced betaA-betaB loops and the respective loops in the Synechococcus and spinach enzymes. The side chains of several large-subunit residues are altered in regions previously shown by directed mutagenesis to influence CO(2)/O(2) specificity. Differences in the catalytic properties of divergent Rubisco enzymes may arise from differences in the small-subunit betaA-betaB loop. This loop may be a worthwhile target for genetic engineering aimed at improving photosynthetic CO(2) fixation.


Asunto(s)
Chlamydomonas reinhardtii/enzimología , Ingeniería de Proteínas , Subunidades de Proteína/química , Proteínas Recombinantes de Fusión/química , Ribulosa-Bifosfato Carboxilasa/química , Ribulosa-Bifosfato Carboxilasa/genética , Animales , Sitios de Unión/genética , Catálisis , Chlamydomonas reinhardtii/genética , Cristalización , Cristalografía por Rayos X , Estabilidad de Enzimas/genética , Fenotipo , Conformación Proteica , Ingeniería de Proteínas/métodos , Estructura Secundaria de Proteína/genética , Subunidades de Proteína/genética , Spinacia oleracea/enzimología , Spinacia oleracea/genética , Synechococcus/enzimología , Synechococcus/genética , Temperatura
9.
J Biol Chem ; 278(49): 49401-5, 2003 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-14506244

RESUMEN

Despite conservation of three-dimensional structure and active-site residues, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) enzymes from divergent species differ with respect to catalytic efficiency and CO2/O2 specificity. A deeper understanding of the structural basis for these differences may provide a rationale for engineering an improved enzyme, thereby leading to an increase in photosynthetic CO2 fixation and agricultural productivity. By comparing 500 active-site large subunit sequences from flowering plants with that of the green alga Chlamydomonas reinhardtii, a small number of residues were found to differ in regions previously shown by mutant screening to influence CO2/O2 specificity. When directed mutagenesis and chloroplast transformation were used to change Chlamydomonas Met-42 and Cys-53 to land plant Val-42 and Ala-53 in the large subunit N-terminal domain, little or no change in Rubisco catalytic properties was observed. However, changing Chlamydomonas methyl-Cys-256, Lys-258, and Ile-265 to land plant Phe-256, Arg-258, and Val-265 at the bottom of the alpha/beta-barrel active site caused a 10% decrease in CO2/O2 specificity, largely due to an 85% decrease in carboxylation catalytic efficiency (Vmax/Km). Because land plant Rubisco enzymes have greater CO2/O2 specificity than the Chlamydomonas enzyme, this group of residues must be complemented by other residues that differ between Chlamydomonas and land plants. The Rubisco x-ray crystal structures indicate that these residues may reside in a variable loop of the nuclear-encoded small subunit, more than 20 A away from the active site.


Asunto(s)
Ribulosa-Bifosfato Carboxilasa/metabolismo , Animales , Sitios de Unión , Catálisis , Chlamydomonas reinhardtii/enzimología , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación Proteica
10.
Biol Pharm Bull ; 27(10): 1576-9, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15467198

RESUMEN

The major metabolites of Diopsyros melanoxylon viz. amyrins and ursolic acid and their lipophilic 3-O-fatty acid ester chains (C12-C18), which are synthesized now under mild esterification conditions in excellent yields (80-95%), were evaluated for their antimicrobial activity against a series of Gram positive and Gram negative bacteria. Significantly these compounds were found to exhibit potent activity against Gram negative bacteria Pseudomonas syringae (ATCC #13457) and fairly good activity against Gram positive bacteria, Bacillus sphaericus (ATCC #14577) and Bacillus subtilis (ATCC #6051).


Asunto(s)
Antibacterianos/síntesis química , Antibacterianos/farmacología , Ácidos Grasos/química , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/síntesis química , Ácido Oleanólico/farmacología , Triterpenos/síntesis química , Triterpenos/farmacología , Antibacterianos/química , Bacterias/efectos de los fármacos , Diospyros , Esterificación , Pruebas de Sensibilidad Microbiana , Peso Molecular , Ácido Oleanólico/química , Extractos Vegetales/química , Hojas de la Planta , Triterpenos/química , Ácido Ursólico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA