Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Dis ; 106(9): 2403-2414, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35171634

RESUMEN

Pythium spp. is one of the major groups of pathogens that cause seedling diseases on soybean, leading to both preemergence and postemergence damping-off and root rot. More than 100 species have been identified within this genus, with Pythium irregulare, P. sylvaticum, P. ultimum var ultimum, and P. torulosum being particularly important for soybean production given their aggressiveness, prevalence, and abundance in production fields. This study investigated the antagonistic activity of potential biological control agents (BCAs) native to the U.S. Midwest against Pythium spp. First, in vitro screening identified BCAs that inhibit P. ultimum var. ultimum growth. Scanning electron microscopy demonstrated evidence of mycoparasitism of all potential biocontrol isolates against P. ultimum var. ultimum and P. torulosum, with the formation of appressorium-like structures, short hyphal branches around host hyphae, hook-shaped structures, coiling, and parallel growth of the mycoparasite along the host hyphae. Based on these promising results, selected BCAs were tested under field conditions against six different Pythium spp. Trichoderma afroharzianum 26 used alone and a mix of T. hamatum 16 + T. afroharzianum 19 used as seed treatments protected soybean seedlings from Pythium spp. infection, as BCA-treated plots had on average 15 to 20% greater plant stand and vigor than control plots. Our results also indicate that some of these potential BCAs could be added with a fungicide seed treatment with minimum inhibition occurring, depending on the fungicide active ingredient. This research highlights the need to develop tools incorporating biological control as a facet of soybean seedling disease management programs. The harnessing of native BCAs could be integrated with other management strategies to provide efficient control of seedling diseases.


Asunto(s)
Fungicidas Industriales , Pythium , Fungicidas Industriales/farmacología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/prevención & control , Pythium/fisiología , Plantones , Semillas , Glycine max
2.
Plant Dis ; 101(4): 576-582, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30677357

RESUMEN

Fluopyram, a succinate dehydrogenase inhibitor (SDHI) fungicide, was recently registered for use as a soybean seed treatment for management of sudden death syndrome (SDS) caused by Fusarium virguliforme. Although registered and now used commercially, in vitro baseline fungicide sensitivity of F. virguliforme to fluopyram has not yet been established. In this study, the baseline sensitivity of F. virguliforme to fluopyram was determined using in vitro growth of mycelium and germination of conidia assays with two collections of F. virguliforme isolates. A total of 130 and 75 F. virguliforme isolates were tested using the mycelial growth and conidia germination assays, respectively, including a core set of isolates that were tested with both assays. In the mycelial growth inhibition assay, 113 out of 130 isolates (86.9%) were inhibited 50% by effective concentrations (EC50) less than 5 µg/ml with a mean EC50 of 3.35 µg/ml. For the conidia germination assay, 73 out of 75 isolates (97%) were determined to have an estimated EC50 of less than 5 µg/ml with a mean EC50 value of 2.28 µg/ml. In a subset of 20 common isolates that were phenotyped with both assays, conidia germination of F. virguliforme was determined to be more sensitive to fluopyram (mean EC50 = 2.28 µg/ml) than mycelial growth (mean EC50 = 3.35 µg/ml). Hormetic effects were observed in the mycelial growth inhibition assay as 22% of the isolates demonstrated more growth on medium amended with the lowest fluopyram concentration (1 µg/ml), as compared with the nonfluopyram amended control. It was not possible to determine EC50 values for nine out of 185 isolates (4.8%), as those isolates were not inhibited by 50% even at the highest fluopyram concentrations of 100 µg/ml for mycelial growth and 20 µg/ml for conidia germination inhibition assays. On the whole, the F. virguliforme population appears to be sensitive to fluopyram, and this study enables future monitoring of fungicide sensitivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA