Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Pept Sci ; 30(6): e3565, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38232955

RESUMEN

Bicyclic peptides are important chemical tools that can function, for example, as bioactive ligands switching on/off signaling pathways mediated by guanine nucleotide-binding proteins as bicycles are more broadly applicable. Despite their relevance in medicinal chemistry, the synthesis of such peptides is challenging, and the final yield is highly dependent on the chemical composition and physicochemical properties of the scaffold. We recently discovered novel, state-specific peptide modulators targeting the Gαi protein, namely, GPM-2/GPM-3, by screening a one-bead-two-compound combinatorial library. A more detailed analysis, including sequence alignments and computer-assisted conformational studies based on the hit compounds, revealed the new peptide 10 as a potential macrobicyclic Gαi ligand sharing high sequence similarity to the known Gαi modulators. The Gαs protein was included in this study for comparison and to unravel the criteria for the specificity of modulator binding to Gαi versus Gαs. This work provides in-depth computer-assisted experimental studies for the analysis of novel macrobicyclic, library-derived Gαi protein ligands. The sequence and structural comparison of 10 with the lead compounds GPM-2 and GPM-3 reveals the importance of the size and amino acid composition of one ring of the bicyclic system and suggests features enhancing the binding affinity of the peptides to the Gαi protein.


Asunto(s)
Diseño de Fármacos , Péptidos Cíclicos , Péptidos Cíclicos/química , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/farmacología , Ligandos , Secuencia de Aminoácidos , Humanos , Modelos Moleculares , Unión Proteica
2.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33903242

RESUMEN

Infection with obligatory intracellular bacteria is difficult to treat, as intracellular targets and delivery methods of therapeutics are not well known. Ehrlichia translocated factor-1 (Etf-1), a type IV secretion system (T4SS) effector, is a primary virulence factor for an obligatory intracellular bacterium, Ehrlichia chaffeensis In this study, we developed Etf-1-specific nanobodies (Nbs) by immunizing a llama to determine if intracellular Nbs block Etf-1 functions and Ehrlichia infection. Of 24 distinct anti-Etf-1 Nbs, NbD7 blocked mitochondrial localization of Etf-1-GFP in cotransfected cells. NbD7 and control Nb (NbD3) bound to different regions of Etf-1. Size-exclusion chromatography showed that the NbD7 and Etf-1 complex was more stable than the NbD3 and Etf-1 complex. Intracellular expression of NbD7 inhibited three activities of Etf-1 and E. chaffeensis: up-regulation of mitochondrial manganese superoxide dismutase, reduction of intracellular reactive oxygen species, and inhibition of cellular apoptosis. Consequently, intracellular NbD7 inhibited Ehrlichia infection, whereas NbD3 did not. To safely and effectively deliver Nbs into the host cell cytoplasm, NbD7 was conjugated to cyclized cell-permeable peptide 12 (CPP12-NbD7). CPP12-NbD7 effectively entered mammalian cells and abrogated the blockade of cellular apoptosis caused by E. chaffeensis and inhibited infection by E. chaffeensis in cell culture and in a severe combined-immunodeficiency mouse model. Our results demonstrate the development of an Nb that interferes with T4SS effector functions and intracellular pathogen infection, along with an intracellular delivery method for this Nb. This strategy should overcome current barriers to advance mechanistic research and develop therapies complementary or alternative to the current broad-spectrum antibiotic.


Asunto(s)
Ehrlichia chaffeensis/efectos de los fármacos , Ehrlichiosis/tratamiento farmacológico , Anticuerpos de Dominio Único/farmacología , Sistemas de Secreción Tipo IV/genética , Animales , Apoptosis/genética , Subgrupos de Linfocitos B/inmunología , Ehrlichia chaffeensis/genética , Ehrlichia chaffeensis/inmunología , Ehrlichia chaffeensis/patogenicidad , Ehrlichiosis/genética , Ehrlichiosis/inmunología , Ehrlichiosis/patología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Ratones , Especies Reactivas de Oxígeno/metabolismo , Anticuerpos de Dominio Único/inmunología , Sistemas de Secreción Tipo IV/antagonistas & inhibidores , Sistemas de Secreción Tipo IV/inmunología , Factores de Virulencia
3.
J Biol Chem ; 298(7): 102107, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35671825

RESUMEN

An ever-increasing number of proteins have been shown to translocate across various membranes of bacterial as well as eukaryotic cells in their folded states as a part of physiological and/or pathophysiological processes. Herein, we provide an overview of the systems/processes that are established or likely to involve the membrane translocation of folded proteins, such as protein export by the twin-arginine translocation system in bacteria and chloroplasts, unconventional protein secretion and protein import into the peroxisome in eukaryotes, and the cytosolic entry of proteins (e.g., bacterial toxins) and viruses into eukaryotes. We also discuss the various mechanistic models that have previously been proposed for the membrane translocation of folded proteins including pore/channel formation, local membrane disruption, membrane thinning, and transport by membrane vesicles. Finally, we introduce a newly discovered vesicular transport mechanism, vesicle budding and collapse, and present evidence that vesicle budding and collapse may represent a unifying mechanism that drives some (and potentially all) of folded protein translocation processes.


Asunto(s)
Pliegue de Proteína , Transporte de Proteínas , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Eucariontes/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Peroxisomas/metabolismo , Señales de Clasificación de Proteína , Sistema de Translocación de Arginina Gemela/metabolismo
4.
Acc Chem Res ; 55(3): 309-318, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35015508

RESUMEN

Biomolecules such as peptides, proteins, and nucleic acids generally cannot cross a cell membrane by passive diffusion. Nevertheless, cell-penetrating peptides (CPPs), bacterial protein toxins, certain eukaryotic proteins, viruses, and many synthetic drug delivery vehicles have been shown to enter the cytosol of eukaryotic cells with varying efficiencies. They generally enter the cell by one or more of the endocytic mechanisms and are initially localized inside the endosomes. But how they cross the endosomal membrane to reach the cytosol (i.e., endosomal escape) has been a mystery for decades, and this knowledge gap has been a major bottleneck for the development of efficient drug delivery systems. In addition, many bacterial and eukaryotic proteins are transported across the plasma membrane in their native states into the periplasmic/extracellular space through the twin-arginine translocation (TAT) and unconventional protein secretion (UPS) systems, respectively. Again, the mechanisms underpinning these protein export systems remain unclear.In this Account, I introduce a previously unrecognized, fundamental membrane translocation mechanism which we have termed the vesicle budding-and-collapse (VBC) mechanism. Through VBC, biomolecules of diverse sizes and physicochemical properties autonomously translocate across cell membranes topologically (i.e., from one side to the other side of the membrane) but not physically (i.e., without going through the membrane). We have demonstrated that CPPs and bacterial protein toxins escape the endosome by the VBC mechanism in giant unilamellar vesicles as well as live mammalian cells. This advance resulted from studies in which we labeled the biomolecules with a pH-sensitive, red-colored dye (pHAb) and phosphatidylserine with a pH-insensitive green dye (TopFluor) and monitored the intracellular trafficking of the biomolecules in real time by confocal microscopy. In addition, by enlarging the endosomes with a kinase inhibitor, we were able to visualize the structural changes of the endosomes (i.e., endosomal escape intermediates) as they went through the VBC process. I postulate that bacterial/viral/eukaryotic proteins, nonenveloped viruses, and synthetic drug delivery vehicles (e.g., polyplexes, lipoplexes, and lipid nanoparticles) may also escape the endosome by inducing VBC. Furthermore, I propose that VBC may be the mechanism that drives the bacterial TAT and eukaryotic UPS systems. Our findings fill a long-standing gap in cell biology and provide guiding principles for designing more efficient drug delivery vehicles.


Asunto(s)
Péptidos de Penetración Celular , Endosomas , Animales , Membrana Celular/metabolismo , Péptidos de Penetración Celular/química , Endosomas/metabolismo , Liposomas/metabolismo , Mamíferos/metabolismo , Nanopartículas
5.
J Am Chem Soc ; 144(47): 21763-21771, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36378906

RESUMEN

Efficient, site-specific, and bio-orthogonal conjugation of chemical functionalities to proteins is of great utility in fundamental research as well as industrial processes (e.g., the production of antibody-drug conjugates and immobilization of enzymes for biocatalysis). A popular approach involves reacting a free N-terminal cysteine with a variety of electrophilic reagents. However, current methods for generating proteins with N-terminal cysteines have significant limitations. Herein we report a novel, efficient, and convenient method for producing recombinant proteins with free N-terminal cysteines by genetically fusing a Met-Pro-Cys sequence to the N-terminus of a protein of interest and subjecting the recombinant protein to the sequential action of methionine and proline aminopeptidases. The resulting protein was site-specifically labeled at the N-terminus with fluorescein and a cyclic cell-penetrating peptide through native chemical ligation and a 2-cyanobenzothiazole moiety, respectively. In addition, the optimal recognition sequence of Aeromonas sobria proline aminopeptidase was determined by screening a combinatorial peptide library and incorporated into the N-terminus of a protein of interest for most efficient N-terminal processing.


Asunto(s)
Aminopeptidasas , Cisteína , Cisteína/metabolismo , Aminopeptidasas/metabolismo , Proteínas Recombinantes/metabolismo , Fluoresceína , Biblioteca de Péptidos
6.
Mol Pharm ; 19(5): 1378-1388, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35405068

RESUMEN

Cyclic cell-penetrating peptide 12 (CPP12) is highly efficient for the cytosolic delivery of a variety of cargo molecules into mammalian cells in vitro and in vivo. However, its cytosolic entry efficiency is substantially reduced at lower concentrations or in the presence of serum proteins. In this study, CPP12 analogs were prepared by replacing its hydrophobic residues with amino acids of varying hydrophobicity and evaluated for cellular entry. Substitution of l-3-benzothienylalanine (Bta) for l-2-naphthylalanine (Nal) resulted in CPP12-2, which exhibits up to 3.8-fold higher cytosolic entry efficiency than CPP12, especially at low CPP concentrations; thanks to improved endosomal escape efficiency. CPP12-2 is well suited for the cytosolic delivery of highly potent cargos to achieve biological activity at low concentrations.


Asunto(s)
Péptidos de Penetración Celular , Aminoácidos/metabolismo , Animales , Péptidos de Penetración Celular/química , Citosol/metabolismo , Endosomas/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Mamíferos/metabolismo
7.
Chem Rev ; 119(17): 10241-10287, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31083977

RESUMEN

Approximately 75% of all disease-relevant human proteins, including those involved in intracellular protein-protein interactions (PPIs), are undruggable with the current drug modalities (i.e., small molecules and biologics). Macrocyclic peptides provide a potential solution to these undruggable targets because their larger sizes (relative to conventional small molecules) endow them the capability of binding to flat PPI interfaces with antibody-like affinity and specificity. Powerful combinatorial library technologies have been developed to routinely identify cyclic peptides as potent, specific inhibitors against proteins including PPI targets. However, with the exception of a very small set of sequences, the vast majority of cyclic peptides are impermeable to the cell membrane, preventing their application against intracellular targets. This Review examines common structural features that render most cyclic peptides membrane impermeable, as well as the unique features that allow the minority of sequences to enter the cell interior by passive diffusion, endocytosis/endosomal escape, or other mechanisms. We also present the current state of knowledge about the molecular mechanisms of cell penetration, the various strategies for designing cell-permeable, biologically active cyclic peptides against intracellular targets, and the assay methods available to quantify their cell-permeability.


Asunto(s)
Membrana Celular/metabolismo , Péptidos de Penetración Celular/metabolismo , Péptidos Cíclicos/metabolismo , Secuencia de Aminoácidos , Animales , Péptidos de Penetración Celular/química , Difusión , Diseño de Fármacos , Endocitosis/fisiología , Endosomas/metabolismo , Humanos , Péptidos Cíclicos/química , Plantas/química , Conformación Proteica , Transporte de Proteínas/fisiología
8.
Nucleic Acids Res ; 47(4): 1950-1963, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30624736

RESUMEN

Bacteriophage λ encodes a DNA recombination system that includes a 5'-3' exonuclease (λ Exo) and a single strand annealing protein (Redß). The two proteins form a complex that is thought to mediate loading of Redß directly onto the single-stranded 3'-overhang generated by λ Exo. Here, we present a 2.3 Å crystal structure of the λ Exo trimer bound to three copies of the Redß C-terminal domain (CTD). Mutation of residues at the hydrophobic core of the interface disrupts complex formation in vitro and impairs recombination in vivo. The Redß CTD forms a three-helix bundle with unexpected structural homology to phage λ Orf, a protein that binds to E. coli single-stranded DNA binding protein (SSB) to function as a recombination mediator. Based on this relationship, we found that Redß binds to full-length SSB, and to a peptide corresponding to its nine C-terminal residues, in an interaction that requires the CTD. These results suggest a dual role of the CTD, first in binding to λ Exo to facilitate loading of Redß directly onto the initial single-stranded DNA (ssDNA) at a 3'-overhang, and second in binding to SSB to facilitate annealing of the overhang to SSB-coated ssDNA at the replication fork.


Asunto(s)
Bacteriófago lambda/enzimología , Proteínas de Unión al ADN/química , Proteínas de Escherichia coli/química , Exodesoxirribonucleasas/química , Proteínas Virales/química , Secuencia de Aminoácidos/genética , Cristalografía por Rayos X , Proteínas de Unión al ADN/genética , Proteínas de Escherichia coli/genética , Exodesoxirribonucleasas/genética , Mutación/genética , Unión Proteica , Dominios Proteicos , Recombinación Genética , Proteínas Virales/genética
9.
J Org Chem ; 85(3): 1416-1424, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31609620

RESUMEN

Macrocyclic peptides have proven to be highly effective inhibitors of protein-protein interactions but generally lack cell permeability to access intracellular targets. We show herein that macrocyclic peptides may be rendered highly cell-permeable and biologically active by conjugating them with a cyclic cell-penetrating peptide (CPP). A previously reported cyclic peptidyl inhibitor against the Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid-2 (Nrf2) interaction (KD = 18 nM) was covalently attached to a cyclic CPP through a flexible linker. The resulting bicyclic peptide retained the Keap1-binding activity, resisted proteolytic degradation, readily entered mammalian cells, and activated the transcriptional activity of Nrf2 at nanomolar to low micromolar concentrations in cell culture. The inhibitor provides a useful tool for investigating the biological function of Keap1-Nrf2 and a potential lead for further development into a novel class of anti-inflammatory and anticancer agents. Our data suggest that other membrane-impermeable cyclic peptides may be similarly rendered cell-permeable by conjugation with a cyclic CPP.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Péptidos Cíclicos , Animales , Ciclo Celular , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Péptidos , Péptidos Cíclicos/farmacología
10.
Bioorg Med Chem ; 28(20): 115711, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33069067

RESUMEN

Cyclic peptides are capable of binding to challenging targets (e.g., proteins involved in protein-protein interactions) with high affinity and specificity, but generally cannot gain access to intracellular targets because of poor membrane permeability. In this work, we discovered a conformationally constrained cyclic cell-penetrating peptide (CPP) containing a d-Pro-l-Pro motif, cyclo(AFΦrpPRRFQ) (where Φ is l-naphthylalanine, r is d-arginine, and p is d-proline). The structural constraints provided by cyclization and the d-Pro-l-Pro motif permitted the rational design of cell-permeable cyclic peptides of large ring sizes (up to 16 amino acids). This strategy was applied to design a potent, cell-permeable, and biologically active cyclic peptidyl inhibitor, cyclo(YpVNFΦrpPRR) (where Yp is l-phosphotyrosine), against the Grb2 SH2 domain. Multidimensional NMR spectroscopic and circular dichroism analyses revealed that the cyclic CPP as well as the Grb2 SH2 inhibitor assume a predominantly random coil structure but have significant ß-hairpin character surrounding the d-Pro-l-Pro motif. These results demonstrate cyclo(AFΦrpPRRFQ) as an effective CPP for endocyclic (insertion of cargo into the CPP ring) or exocyclic delivery of biological cargos (attachment of cargo to the Gln side chain).


Asunto(s)
Péptidos de Penetración Celular/farmacología , Dipéptidos/farmacología , Diseño de Fármacos , Proteína Adaptadora GRB2/antagonistas & inhibidores , Péptidos Cíclicos/farmacología , Péptidos de Penetración Celular/síntesis química , Péptidos de Penetración Celular/química , Dipéptidos/química , Relación Dosis-Respuesta a Droga , Proteína Adaptadora GRB2/aislamiento & purificación , Proteína Adaptadora GRB2/metabolismo , Humanos , Estructura Molecular , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/química , Relación Estructura-Actividad , Células Tumorales Cultivadas , Dominios Homologos src/efectos de los fármacos
11.
Chembiochem ; 20(16): 2085-2088, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31298779

RESUMEN

A new family of cyclic cell-penetrating peptides (CPPs) has been discovered; they differ from previously reported cyclic CPPs by containing only a single hydrophobic residue. The optimal CPP structure consists of four arginine residues and a hydrophobic residue with a long alkyl chain (e.g., a decyl group) in a cyclohexapeptide ring. The most active member of this family, CPP 17, has an intrinsic cellular entry efficiency similar to that of cyclic CPP12, the most active CPP reported to date. However, CPP 17 is 2.8 times more active than CPP12 under high serum protein concentrations, presumably because of the lower protein binding. CPP 17 enters the cell primarily by direct translocation at a relatively low concentration (≥5 µm).


Asunto(s)
Péptidos de Penetración Celular/química , Citosol/química , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Conformación Molecular , Imagen Óptica , Estereoisomerismo
12.
Bioconjug Chem ; 30(2): 273-283, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30525488

RESUMEN

Intracellular delivery of biological agents such as peptides, proteins, and nucleic acids generally rely on the endocytic pathway as the major uptake mechanism, resulting in their entrapment inside the endosome and lysosome. The recent discovery of cell-penetrating molecules of exceptionally high endosomal escape and cytosolic delivery efficiencies and elucidation of their mechanism of action represent major breakthroughs in this field. In this Topical Review, we provide an overview of the recent progress in understanding and enhancing the endosomal escape process and the new opportunities opened up by these recent findings.


Asunto(s)
Portadores de Fármacos/metabolismo , Endosomas/metabolismo , Animales , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Humanos , Fusión de Membrana , Ósmosis , Péptidos/química , Péptidos/metabolismo , Preparaciones Farmacéuticas/administración & dosificación
13.
J Am Chem Soc ; 140(38): 12102-12110, 2018 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-30176143

RESUMEN

Macrocyclic peptides are capable of binding to flat protein surfaces such as the interfaces of protein-protein interactions with antibody-like affinity and specificity, but generally lack cell permeability in order to access intracellular targets. In this work, we designed and synthesized a large combinatorial library of cell-permeable bicyclic peptides, in which the first ring consisted of randomized peptide sequences for potential binding to a target of interest, while the second ring featured a family of different cell-penetrating motifs, for both cell penetration and target binding. The library was screened against the IκB kinase α/ß (IKKα/ß)-binding domain of NF-κB essential modulator (NEMO), resulting in the discovery of several cell-permeable bicyclic peptides, which inhibited the NEMO-IKKß interaction with low µM IC50 values. Further optimization of one of the hits led to a relatively potent and cell-permeable NEMO inhibitor (IC50 = 1.0 µM), which selectively inhibited canonical NF-κB signaling in mammalian cells and the proliferation of cisplatin-resistant ovarian cancer cells. The inhibitor provides a useful tool for investigating the biological functions of NEMO/NF-κB and a potential lead for further development of a novel class of anti-inflammatory and anticancer drugs.


Asunto(s)
Quinasa I-kappa B/metabolismo , Biblioteca de Péptidos , Péptidos Cíclicos/farmacología , Unión Proteica/efectos de los fármacos , Secuencia de Aminoácidos , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/toxicidad , Transporte Biológico , Línea Celular Tumoral , Células HEK293 , Humanos , Quinasa I-kappa B/química , Simulación del Acoplamiento Molecular , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/química , Péptidos Cíclicos/toxicidad , Transducción de Señal/efectos de los fármacos
14.
Biochem J ; 474(7): 1109-1125, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28298556

RESUMEN

Macrocyclic compounds such as cyclic peptides have emerged as a new and exciting class of drug candidates for inhibition of intracellular protein-protein interactions, which are challenging targets for conventional drug modalities (i.e. small molecules and proteins). Over the past decade, several complementary technologies have been developed to synthesize macrocycle libraries and screen them for binding to therapeutically relevant targets. Two different approaches have also been explored to increase the membrane permeability of cyclic peptides. In this review, we discuss these methods and their applications in the discovery of macrocyclic compounds against protein-protein interactions.


Asunto(s)
Biblioteca de Péptidos , Péptidos Cíclicos/farmacología , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Proteínas/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Productos Biológicos/síntesis química , Productos Biológicos/aislamiento & purificación , Productos Biológicos/farmacología , Transporte Biológico , Permeabilidad de la Membrana Celular/efectos de los fármacos , Difusión , Descubrimiento de Drogas , Células Eucariotas/citología , Células Eucariotas/efectos de los fármacos , Células Eucariotas/metabolismo , Humanos , Inteínas/efectos de los fármacos , Péptidos Cíclicos/síntesis química , Unión Proteica/efectos de los fármacos , Proteínas/química , Bibliotecas de Moléculas Pequeñas/síntesis química
15.
Angew Chem Int Ed Engl ; 57(52): 17183-17188, 2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30376611

RESUMEN

Mitochondrial dysfunction is linked to a variety of human illnesses, but selective delivery of therapeutics into the mitochondrion is challenging. Now a family of amphipathic cell-penetrating motifs (CPMs) is presented, consisting of four guanidinium groups and one or two aromatic hydrophobic groups (naphthalene) assembled through a central scaffold (a benzene ring). The CPMs and CPM-cargo conjugates efficiently enter the interior of cultured mammalian cells and are specifically localized into the mitochondrial matrix, as revealed by high-resolution confocal microscopy. With a membrane-impermeable peptide as cargo, the CPMs exhibited ≥170-fold higher delivery efficiency than previous mitochondrial delivery vehicles. Conjugation of a small-molecule inhibitor of heat shock protein 90 to a CPM resulted in accumulation of the inhibitor inside the mitochondrial matrix with greatly enhanced anticancer activity. The CPMs showed minimal effect on the viability or the mitochondrial membrane potential of mammalian cells.


Asunto(s)
Péptidos de Penetración Celular/farmacología , Sistemas de Liberación de Medicamentos , Mitocondrias/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Péptidos de Penetración Celular/síntesis química , Péptidos de Penetración Celular/química , Células HeLa , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/química , Estructura Molecular
16.
Chemistry ; 23(52): 12690-12703, 2017 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-28590540

RESUMEN

Bicyclic peptides have greater conformational rigidity and metabolic stability than linear and monocyclic peptides and are capable of binding to challenging drug targets with antibody-like affinity and specificity. Powerful combinatorial library technologies have recently been developed to rapidly synthesize and screen large bicyclic peptide libraries for ligands against enzymes, receptors, and protein-protein interaction targets. Bicyclic peptides have been developed as potential therapeutics against a wide range of diseases, drug targeting agents, imaging/diagnostic probes, and research tools. In this Minireview, we provide a summary of the recent progresses on the synthesis and applications of bicyclic peptides.


Asunto(s)
Compuestos Bicíclicos con Puentes/química , Péptidos Cíclicos/química , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Neoplasias/diagnóstico por imagen , Biblioteca de Péptidos , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/farmacología , Tomografía de Emisión de Positrones , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Receptores de Glucagón/antagonistas & inhibidores
17.
Org Biomol Chem ; 15(45): 9595-9598, 2017 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-29116277

RESUMEN

Protein tyrosine phosphatases (PTPs) have been challenging targets for inhibitor design, because all PTPs share a highly conserved active site structure, which is positively charged and requires negatively charged moieties for tight binding. In this study, we developed cell-permeable bicyclic peptidyl inhibitors against T-cell PTP (TCPTP), which feature a cell-penetrating motif in one ring and a target-binding sequence in the second ring.


Asunto(s)
Técnicas Químicas Combinatorias , Inhibidores Enzimáticos/farmacología , Péptidos Cíclicos/farmacología , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 2/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Células HeLa , Humanos , Conformación Molecular , Biblioteca de Péptidos , Péptidos Cíclicos/química , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 2/metabolismo , Relación Estructura-Actividad
18.
Org Biomol Chem ; 15(21): 4540-4543, 2017 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-28517007

RESUMEN

Cyclic peptides are capable of binding and modulating challenging drug targets including protein-protein interactions. However, their lack of membrane permeability prevents their application against intracellular targets. In this study, we show that it is possible to design a cell-permeable and biologically active cycloheptapeptide inhibitor against the intracellular enzyme peptidyl-prolyl isomerase Pin1 by integrating cell-penetrating and target-binding sequences.


Asunto(s)
Permeabilidad de la Membrana Celular , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Peptidilprolil Isomerasa de Interacción con NIMA/antagonistas & inhibidores , Péptidos Cíclicos/metabolismo , Péptidos Cíclicos/farmacología , Células HeLa , Humanos
19.
Angew Chem Int Ed Engl ; 56(6): 1525-1529, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28035784

RESUMEN

Therapeutic applications of peptides are currently limited by their proteolytic instability and impermeability to the cell membrane. A general, reversible bicyclization strategy is now reported to increase both the proteolytic stability and cell permeability of peptidyl drugs. A peptide drug is fused with a short cell-penetrating motif and converted into a conformationally constrained bicyclic structure through the formation of a pair of disulfide bonds. The resulting bicyclic peptide has greatly enhanced proteolytic stability as well as cell-permeability. Once inside the cell, the disulfide bonds are reduced to produce a linear, biologically active peptide. This strategy was applied to generate a cell-permeable bicyclic peptidyl inhibitor against the NEMO-IKK interaction.


Asunto(s)
Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/farmacología , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Mapas de Interacción de Proteínas/efectos de los fármacos , Secuencia de Aminoácidos , Permeabilidad de la Membrana Celular , Péptidos de Penetración Celular/metabolismo , Péptidos de Penetración Celular/farmacocinética , Descubrimiento de Drogas , Estabilidad de Medicamentos , Células HeLa , Humanos , Quinasa I-kappa B/metabolismo , Péptidos Cíclicos/metabolismo , Péptidos Cíclicos/farmacocinética , Farmacocinética , Proteolisis , Técnicas de Síntesis en Fase Sólida
20.
Biochemistry ; 55(18): 2601-12, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27089101

RESUMEN

Previous cell-penetrating peptides (CPPs) generally have low cytosolic delivery efficiencies, because of inefficient endosomal escape. In this study, a family of small, amphipathic cyclic peptides was found to be highly efficient CPPs, with cytosolic delivery efficiencies of up to 120% (compared to 2.0% for Tat). These cyclic CPPs bind directly to the plasma membrane phospholipids and enter mammalian cells via endocytosis, followed by efficient release from the endosome. Their total cellular uptake efficiency correlates positively with the binding affinity for the plasma membrane, whereas their endosomal escape efficiency increases with the endosomal membrane-binding affinity. The cyclic CPPs induce membrane curvature on giant unilamellar vesicles and budding of small vesicles, which subsequently collapse into amorphous lipid/peptide aggregates. These data suggest that cyclic CPPs exit the endosome by binding to the endosomal membrane and inducing CPP-enriched lipid domains to bud off as small vesicles. Together with their high proteolytic stability, low cytotoxicity, and oral bioavailability, these cyclic CPPs should provide a powerful system for intracellular delivery of therapeutic agents and chemical probes.


Asunto(s)
Péptidos de Penetración Celular , Endosomas/metabolismo , Membranas Intracelulares/metabolismo , Células A549 , Animales , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/farmacocinética , Péptidos de Penetración Celular/farmacología , Células HeLa , Humanos , Ratones , Células 3T3 NIH , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacocinética , Péptidos Cíclicos/farmacología , Permeabilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA