Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Allergy ; 71(7): 944-56, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26850094

RESUMEN

BACKGROUND: Accumulation of activated eosinophils in tissue is a hallmark of allergic inflammation. The endocannabinoid 2-arachidonoylglycerol (2-AG) has been proposed to elicit eosinophil migration in a CB2 receptor/Gi/o -dependent manner. However, it has been claimed recently that this process may also involve other mechanisms such as cytokine priming and the metabolism of 2-AG into eicosanoids. Here, we explored the direct contribution of specific CB2 receptor activation to human and mouse eosinophil effector function in vitro and in vivo. METHODS: In vitro studies including CB2 expression, adhesion and migratory responsiveness, respiratory burst, degranulation, and calcium mobilization were conducted in human peripheral blood eosinophils and mouse bone marrow-derived eosinophils. Allergic airway inflammation was assessed in mouse models of acute OVA-induced asthma and directed eosinophil migration. RESULTS: CB2 expression was significantly higher in eosinophils from symptomatic allergic donors. The selective CB2 receptor agonist JWH-133 induced a moderate migratory response in eosinophils. However, short-term exposure to JWH-133 potently enhanced chemoattractant-induced eosinophil shape change, chemotaxis, CD11b surface expression, and adhesion as well as production of reactive oxygen species. Receptor specificity of the observed effects was confirmed in eosinophils from CB2 knockout mice and by using the selective CB2 antagonist SR144528. Of note, systemic application of JWH-133 clearly primed eosinophil-directed migration in vivo and aggravated both AHR and eosinophil influx into the airways in a CB2 -specific manner. This effect was completely absent in eosinophil-deficient ∆dblGATA mice. CONCLUSION: Our data indicate that CB2 may directly contribute to the pathogenesis of eosinophil-driven diseases. Moreover, we provide new insights into the molecular mechanisms underlying the CB2 -mediated priming of eosinophils. Hence, antagonism of CB2 receptors may represent a novel pharmacological approach for the treatment of allergic inflammation and other eosinophilic disorders.


Asunto(s)
Alérgenos/inmunología , Eosinófilos/inmunología , Eosinófilos/metabolismo , Neumonía/etiología , Neumonía/metabolismo , Receptor Cannabinoide CB2/metabolismo , Animales , Biomarcadores , Calcio/metabolismo , Cannabinoides/farmacología , Degranulación de la Célula/inmunología , Movimiento Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Eosinófilos/efectos de los fármacos , Femenino , Expresión Génica , Humanos , Hipersensibilidad/genética , Hipersensibilidad/inmunología , Hipersensibilidad/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Toxina del Pertussis/inmunología , Neumonía/patología , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/genética , Quinasas Asociadas a rho/metabolismo
2.
Br J Pharmacol ; 171(23): 5387-406, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25048571

RESUMEN

BACKGROUND AND PURPOSE: Heteromerization of GPCRs is key to the integration of extracellular signals and the subsequent cell response via several mechanisms including heteromer-selective ligand binding, trafficking and/or downstream signalling. As the lysophosphatidylinositol GPCR 55 (GPR55) has been shown to affect the function of the cannabinoid receptor subtype 2 (CB2 receptor) in human neutrophils, we investigated the possible heteromerization of CB2 receptors with GPR55. EXPERIMENTAL APPROACH: The direct interaction of human GPR55 and CB2 receptors heterologously expressed in HEK293 cells was assessed by co-immunoprecipitation and bioluminescence resonance energy transfer assays. The effect of cross-talk on signalling was investigated at downstream levels by label-free real-time methods (Epic dynamic mass redistribution and CellKey impedance assays), ERK1/2-MAPK activation and gene reporter assays. KEY RESULTS: GPR55 and CB2 receptors co-localized on the surface of HEK293 cells, co-precipitated in membrane extracts and formed heteromers in living HEK293 cells. Whereas heteromerization led to a reduction in GPR55-mediated activation of transcription factors (nuclear factor of activated T-cells, NF-κB and cAMP response element), ERK1/2-MAPK activation was potentiated in the presence of CB2 receptors. CB2 receptor-mediated signalling was also affected by co-expression with GPR55. Label-free assays confirmed cross-talk between the two receptors. CONCLUSIONS AND IMPLICATIONS: Heteromers, unique signalling units, form in HEK293 cells expressing GPR55 and CB2 receptors. The signalling by agonists of either receptor was governed (i) by the presence or absence of the partner receptors (with the consequent formation of heteromers) and (ii) by the activation state of the partner receptor.


Asunto(s)
Receptor Cannabinoide CB2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células HEK293 , Humanos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , FN-kappa B/metabolismo , Receptores de Cannabinoides , Elemento de Respuesta al Suero , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA