RESUMEN
CO2 is converted into biomass almost solely by the enzyme rubisco. The poor carboxylation properties of plant rubiscos have led to efforts that made it the most kinetically characterized enzyme, yet these studies focused on < 5% of its natural diversity. Here, we searched for fast-carboxylating variants by systematically mining genomic and metagenomic data. Approximately 33,000 unique rubisco sequences were identified and clustered into ≈ 1,000 similarity groups. We then synthesized, purified, and biochemically tested the carboxylation rates of 143 representatives, spanning all clusters of form-II and form-II/III rubiscos. Most variants (> 100) were active in vitro, with the fastest having a turnover number of 22 ± 1 s-1 -sixfold faster than the median plant rubisco and nearly twofold faster than the fastest measured rubisco to date. Unlike rubiscos from plants and cyanobacteria, the fastest variants discovered here are homodimers and exhibit a much simpler folding and activation kinetics. Our pipeline can be utilized to explore the kinetic space of other enzymes of interest, allowing us to get a better view of the biosynthetic potential of the biosphere.
Asunto(s)
Minería de Datos , Bases de Datos de Ácidos Nucleicos , Ribulosa-Bifosfato Carboxilasa , Isoenzimas/clasificación , Isoenzimas/genética , Ribulosa-Bifosfato Carboxilasa/clasificación , Ribulosa-Bifosfato Carboxilasa/genéticaRESUMEN
Loop-mediated isothermal amplification (LAMP) is a rapid, state-of-the-art DNA amplification technology, used primarily for the quick diagnosis and early identification of microbial infection, caused by pathogens such as virus, bacteria and malaria. A target DNA can be amplified within 30 min using the LAMP reaction, taking place at a steady temperature. The LAMP method uses four or six primers to bind eight regions of a target DNA and has a very high specificity. The devices used for conducting LAMP are usually simple since the LAMP method is an isothermal process. When LAMP is coupled with Reverse Transcription (RT), it allows direct detection of RNA in a sample. This greatly enhances the efficiency of diagnosis of RNA viruses in a sample. Recently, the rampant spread of COVID-19 demanded such a rapid, simple, and cost-effective Point of Care Test (PoCT) for the accurate diagnosis of this pandemic. Loop-mediated isothermal amplification (LAMP) assays are not only used for the detection of microbial pathogens, but there are various other applications such as detection of genetic mutations in food and various organisms. In this review, various implementations of RT-LAMP techniques would be discussed.
Asunto(s)
Bioensayo , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , ADN Polimerasa Dirigida por ARN , Mutación , ADNRESUMEN
Although the mode of action of the ribosomes, the multi-component universal effective protein-synthesis organelles, has been thoroughly explored, their mere appearance remained elusive. Our earlier comparative structural studies suggested that a universal internal small RNA pocket-like segment called by us the protoribosome, which is still embedded in the contemporary ribosome, is a vestige of the primordial ribosome. Herein, after constructing such pockets, we show using the "fragment reaction" and its analyses by MALDI-TOF and LC-MS mass spectrometry techniques, that several protoribosome constructs are indeed capable of mediating peptide-bond formation. These findings present strong evidence supporting our hypothesis on origin of life and on ribosome's construction, thus suggesting that the protoribosome may be the missing link between the RNA dominated world and the contemporary nucleic acids/proteins life.
Asunto(s)
Origen de la Vida , Proteínas/metabolismo , ARN , Ribosomas , Péptidos/metabolismo , Biosíntesis de Proteínas , ARN/metabolismo , Ribosomas/metabolismoRESUMEN
Grass pea (Lathyrus sativus L.) is a grain legume commonly grown in Asia and Africa for food and forage. It is a highly nutritious and robust crop, capable of surviving both droughts and floods. However, it produces a neurotoxic compound, ß-N-oxalyl-L-α,ß-diaminopropionic acid (ß-ODAP), which can cause a severe neurological disorder when consumed as a primary diet component. While the catalytic activity associated with ß-ODAP formation was demonstrated more than 50 years ago, the enzyme responsible for this activity has not been identified. Here, we report on the identity, activity, 3D structure, and phylogenesis of this enzyme-ß-ODAP synthase (BOS). We show that BOS belongs to the benzylalcohol O-acetyltransferase, anthocyanin O-hydroxycinnamoyltransferase, anthranilate N-hydroxycinnamoyl/benzoyltransferase, deacetylvindoline 4-O-acetyltransferase superfamily of acyltransferases and is structurally similar to hydroxycinnamoyl transferase. Using molecular docking, we propose a mechanism for its catalytic activity, and using heterologous expression in tobacco leaves (Nicotiana benthamiana), we demonstrate that expression of BOS in the presence of its substrates is sufficient for ß-ODAP production in vivo. The identification of BOS may pave the way toward engineering ß-ODAP-free grass pea cultivars, which are safe for human and animal consumption.
Asunto(s)
Aminoácidos Diaminos , Lathyrus/enzimología , Neurotoxinas , Acetiltransferasas , Aminoácidos Diaminos/metabolismo , Simulación del Acoplamiento MolecularRESUMEN
Accurate and regulated protein targeting is crucial for cellular function and proteostasis. In the yeast Saccharomyces cerevisiae, peroxisomal matrix proteins, which harboring a Peroxisomal Targeting Signal 1 (PTS1), can utilize two paralog targeting factors, Pex5 and Pex9, to target correctly. While both proteins are similar and recognize PTS1 signals, Pex9 targets only a subset of Pex5 cargo proteins. However, what defines this substrate selectivity remains uncovered. Here, we used unbiased screens alongside directed experiments to identify the properties underlying Pex9 targeting specificity. We find that the specificity of Pex9 is largely determined by the hydrophobic nature of the amino acid preceding the PTS1 tripeptide of its cargos. This is explained by structural modeling of the PTS1-binding cavities of the two factors showing differences in their surface hydrophobicity. Our work outlines the mechanism by which targeting specificity is achieved, enabling dynamic rewiring of the peroxisomal proteome in changing metabolic needs.
Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Peroxisomas/metabolismoRESUMEN
Seventy years following the discovery of peroxisomes, their complete proteome, the peroxi-ome, remains undefined. Uncovering the peroxi-ome is crucial for understanding peroxisomal activities and cellular metabolism. We used high-content microscopy to uncover peroxisomal proteins in the model eukaryote - Saccharomyces cerevisiae. This strategy enabled us to expand the known peroxi-ome by ~40% and paved the way for performing systematic, whole-organellar proteome assays. By characterizing the sub-organellar localization and protein targeting dependencies into the organelle, we unveiled non-canonical targeting routes. Metabolomic analysis of the peroxi-ome revealed the role of several newly identified resident enzymes. Importantly, we found a regulatory role of peroxisomes during gluconeogenesis, which is fundamental for understanding cellular metabolism. With the current recognition that peroxisomes play a crucial part in organismal physiology, our approach lays the foundation for deep characterization of peroxisome function in health and disease.
Asunto(s)
Peroxisomas , Proteoma , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Peroxisomas/metabolismo , Proteoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMEN
Temperate viruses can become dormant in their host cells, a process called lysogeny. In every infection, such viruses decide between the lytic and the lysogenic cycles, that is, whether to replicate and lyse their host or to lysogenize and keep the host viable. Here we show that viruses (phages) of the SPbeta group use a small-molecule communication system to coordinate lysis-lysogeny decisions. During infection of its Bacillus host cell, the phage produces a six amino-acids-long communication peptide that is released into the medium. In subsequent infections, progeny phages measure the concentration of this peptide and lysogenize if the concentration is sufficiently high. We found that different phages encode different versions of the communication peptide, demonstrating a phage-specific peptide communication code for lysogeny decisions. We term this communication system the 'arbitrium' system, and further show that it is encoded by three phage genes: aimP, which produces the peptide; aimR, the intracellular peptide receptor; and aimX, a negative regulator of lysogeny. The arbitrium system enables a descendant phage to 'communicate' with its predecessors, that is, to estimate the amount of recent previous infections and hence decide whether to employ the lytic or lysogenic cycle.
Asunto(s)
Bacteriólisis , Bacteriófagos/fisiología , Lisogenia , Secuencia de Aminoácidos , Bacillus/citología , Bacillus/virología , Bacteriólisis/efectos de los fármacos , Bacteriófagos/efectos de los fármacos , Medios de Cultivo Condicionados/química , Medios de Cultivo Condicionados/farmacología , ADN Viral/metabolismo , Lisogenia/efectos de los fármacos , Modelos Biológicos , Péptidos/química , Péptidos/metabolismo , Péptidos/farmacología , Multimerización de Proteína , Transcripción Genética/efectos de los fármacos , Proteínas Virales/química , Proteínas Virales/metabolismo , Proteínas Virales/farmacologíaRESUMEN
Approximately half of eukaryotic proteins reside in organelles. To reach their correct destination, such proteins harbor targeting signals recognized by dedicated targeting pathways. It has been shown that differences in targeting signals alter the efficiency in which proteins are recognized and targeted. Since multiple proteins compete for any single pathway, such differences can affect the priority for which a protein is catered. However, to date the entire repertoire of proteins with targeting priority, and the mechanisms underlying it, have not been explored for any pathway. Here we developed a systematic tool to study targeting priority and used the Pex5-mediated targeting to yeast peroxisomes as a model. We titrated Pex5 out by expressing high levels of a Pex5-cargo protein and examined how the localization of each peroxisomal protein is affected. We found that while most known Pex5 cargo proteins were outcompeted, several cargo proteins were not affected, implying that they have high targeting priority. This priority group was dependent on metabolic conditions. We dissected the mechanism of priority for these proteins and suggest that targeting priority is governed by different parameters, including binding affinity of the targeting signal to the cargo factor, the number of binding interfaces to the cargo factor, and more. This approach can be modified to study targeting priority in various organelles, cell types, and organisms.
Asunto(s)
Señales de Direccionamiento al Peroxisoma , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Peroxisomas/metabolismo , Prueba de Estudio Conceptual , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMEN
Within the superfamily of small GTPases, Ras appears to be the master regulator of such processes as cell cycle progression, cell division, and apoptosis. Several oncogenic Ras mutations at amino acid positions 12, 13, and 61 have been identified that lose their ability to hydrolyze GTP, giving rise to constitutive signaling and eventually development of cancer. While disruption of the Ras/effector interface is an attractive strategy for drug design to prevent this constitutive activity, inhibition of this interaction using small molecules is impractical due to the absence of a cavity to which such molecules could bind. However, proteins and especially natural Ras effectors that bind to the Ras/effector interface with high affinity could disrupt Ras/effector interactions and abolish procancer pathways initiated by Ras oncogene. Using a combination of computational design and in vitro evolution, we engineered high-affinity Ras-binding proteins starting from a natural Ras effector, RASSF5 (NORE1A), which is encoded by a tumor suppressor gene. Unlike previously reported Ras oncogene inhibitors, the proteins we designed not only inhibit Ras-regulated procancer pathways, but also stimulate anticancer pathways initiated by RASSF5. We show that upon introduction into A549 lung carcinoma cells, the engineered RASSF5 mutants decreased cell viability and mobility to a significantly greater extent than WT RASSF5. In addition, these mutant proteins induce cellular senescence by increasing acetylation and decreasing phosphorylation of p53. In conclusion, engineered RASSF5 variants provide an attractive therapeutic strategy able to oppose cancer development by means of inhibiting of procancer pathways and stimulating anticancer processes.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Adenocarcinoma del Pulmón/genética , Proteínas Reguladoras de la Apoptosis/genética , Neoplasias Pulmonares/genética , Células A549 , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/metabolismo , Genes Supresores de Tumor , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Modelos Moleculares , Mutación , Unión Proteica , Dominios Proteicos , Proteínas ras/genética , Proteínas ras/metabolismoRESUMEN
Protein-protein interactions (PPIs) have evolved to display binding affinities that can support their function. As such, cognate and noncognate PPIs could be highly similar structurally but exhibit huge differences in binding affinities. To understand this phenomenon, we study three homologous protease-inhibitor PPIs that span 9 orders of magnitude in binding affinity. Using state-of-the-art methodology that combines protein randomization, affinity sorting, deep sequencing, and data normalization, we report quantitative binding landscapes consisting of ΔΔGbind values for the three PPIs, gleaned from tens of thousands of single and double mutations. We show that binding landscapes of the three complexes are strikingly different and depend on the PPI evolutionary optimality. We observe different patterns of couplings between mutations for the three PPIs with negative and positive epistasis appearing most frequently at hot-spot and cold-spot positions, respectively. The evolutionary trends observed here are likely to be universal to other biological complexes in the cell.
Asunto(s)
Mapeo de Interacción de ProteínasRESUMEN
Toxin-antitoxin (TA) modules, composed of a toxic protein and a counteracting antitoxin, play important roles in bacterial physiology. We examined the experimental insertion of 1.5 million genes from 388 microbial genomes into an Escherichia coli host using more than 8.5 million random clones. This revealed hundreds of genes (toxins) that could only be cloned when the neighboring gene (antitoxin) was present on the same clone. Clustering of these genes revealed TA families widespread in bacterial genomes, some of which deviate from the classical characteristics previously described for such modules. Introduction of these genes into E. coli validated that the toxin toxicity is mitigated by the antitoxin. Infection experiments with T7 phage showed that two of the new modules can provide resistance against phage. Moreover, our experiments revealed an "antidefense" protein in phage T7 that neutralizes phage resistance. Our results expose active fronts in the arms race between bacteria and phage.
Asunto(s)
Antitoxinas/genética , Toxinas Bacterianas/genética , Clonación Molecular/métodos , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Genoma Bacteriano , Antitoxinas/metabolismo , Toxinas Bacterianas/metabolismo , Bacteriófago T7/patogenicidad , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Escherichia coli/virología , Proteínas de Escherichia coli/metabolismo , Interacciones Huésped-Patógeno , Familia de Multigenes , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN , Factores de Tiempo , VirulenciaRESUMEN
Autophagy, an evolutionarily conserved intracellular catabolic process, leads to the degradation of cytosolic proteins and organelles in the vacuole/lysosome. Different forms of selective autophagy have recently been described. Starvation-induced protein degradation, however, is considered to be nonselective. Here we describe a novel interaction between autophagy-related protein 8 (Atg8) and fatty acid synthase (FAS), a pivotal enzymatic complex responsible for the entire synthesis of C16- and C18-fatty acids in yeast. We show that although FAS possesses housekeeping functions, under starvation conditions it is delivered to the vacuole for degradation by autophagy in a Vac8- and Atg24-dependent manner. We also provide evidence that FAS degradation is essential for survival under nitrogen deprivation. Our results imply that during nitrogen starvation specific proteins are preferentially recruited into autophagosomes.
Asunto(s)
Autofagia , Ácido Graso Sintasas/metabolismo , Nitrógeno/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteolisis , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMEN
Much evidence points to a role of Na,K-ATPase in ouabain-dependent signal transduction. Based on experiments with different cell lines and native tissue membranes, a current hypothesis postulates direct interactions between the Na,K-ATPase and Src kinase (non-receptor tyrosine kinase). Na,K-ATPase is proposed to bind Src kinase and inhibit its activity, whereas ouabain, the specific Na,K-ATPase inhibitor, binds and stabilizes the E2 conformation, thus exposing the Src kinase domain and its active site Tyr-418 for activation. Ouabain-dependent signaling is thought to be mediated within caveolae by a complex consisting of Na,K-ATPase, caveolin, and Src kinase. In the current work, we have looked for direct interactions utilizing purified recombinant Na,K-ATPase (human α1ß1FXYD1 or porcine α1D369Nß1FXYD1) and purified human Src kinase and human caveolin 1 or interactions between these proteins in native membrane vesicles isolated from rabbit kidney. By several independent criteria and techniques, no stable interactions were detected between Na,K-ATPase and purified Src kinase. Na,K-ATPase was found to be a substrate for Src kinase phosphorylation at Tyr-144. Clear evidence for a direct interaction between purified human Na,K-ATPase and human caveolin was obtained, albeit with a low molar stoichiometry (1:15-30 caveolin 1/Na,K-ATPase). In native renal membranes, a specific caveolin 14-5 oligomer (95 kDa) was found to be in direct interaction with Na,K-ATPase. We inferred that a small fraction of the renal Na,K-ATPase molecules is in a â¼1:1 complex with a caveolin 14-5 oligomer. Thus, overall, whereas a direct caveolin 1/Na,K-ATPase interaction is confirmed, the lack of direct Src kinase/Na,K-ATPase binding requires reassessment of the mechanism of ouabain-dependent signaling.
Asunto(s)
Caveolina 1/metabolismo , Membrana Celular/metabolismo , Médula Renal/metabolismo , Microsomas/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Familia-src Quinasas/metabolismo , Animales , Western Blotting , Caveolas/metabolismo , Células Cultivadas , Vesículas Citoplasmáticas/metabolismo , Humanos , Inmunoprecipitación , Fosforilación , Unión Proteica , Conejos , Transducción de Señal , PorcinosRESUMEN
Efficient conversion of cellulose into soluble sugars is a key technological bottleneck limiting efficient production of plant-derived biofuels and chemicals. In nature, the process is achieved by the action of a wide range of cellulases and associated enzymes. In aerobic microrganisms, cellulases are secreted as free enzymes. Alternatively, in certain anaerobic microbes, cellulases are assembled into large multienzymes complexes, termed "cellulosomes," which allow for efficient hydrolysis of cellulose. Recently, it has been shown that enzymes classified as lytic polysaccharide monooxygenases (LPMOs) were able to strongly enhance the activity of cellulases. However, LPMOs are exclusively found in aerobic organisms and, thus, cannot benefit from the advantages offered by the cellulosomal system. In this study, we designed several dockerin-fused LPMOs based on enzymes from the bacterium Thermobifida fusca. The resulting chimeras exhibited activity levels on microcrystalline cellulose similar to that of the wild-type enzymes. The dockerin moieties of the chimeras were demonstrated to be functional and to specifically bind to their corresponding cohesin partner. The chimeric LPMOs were able to self-assemble in designer cellulosomes alongside an endo- and an exo-cellulase also converted to the cellulosomal mode. The resulting complexes showed a 1.7-fold increase in the release of soluble sugars from cellulose, compared with the free enzymes, and a 2.6-fold enhancement compared with free cellulases without LPMO enhancement. These results highlight the feasibility of the conversion of LPMOs to the cellulosomal mode, and that these enzymes can benefit from the proximity effects generated by the cellulosome architecture.
Asunto(s)
Actinomycetales/enzimología , Proteínas Bacterianas/química , Celulosa/química , Oxigenasas de Función Mixta/químicaRESUMEN
Proenzyme maturation is a general mechanism to control the activation of enzymes. Catalytically active members of the A Disintegrin And Metalloprotease (ADAM) family of membrane-anchored metalloproteases are synthesized as proenzymes, in which the latency is maintained by their autoinhibitory pro-domains. A proteolytic processing then transforms the proenzyme into a catalytically active form. The removal of the pro-domain of ADAMs is currently thought to depend on processing at a canonical consensus site for the proprotein convertase Furin (RXXR) between the pro- and the catalytic domain. Here, we demonstrate that this previously described canonical site is a secondary cleavage site to a prerequisite cleavage in a newly characterized upstream PC site embedded within the pro-domain sequence. The novel upstream regulatory site is important for the maturation of several ADAM proenzymes. Mutations in the upstream regulatory site of ADAM17, ADAM10, and ADAM9 do not prevent pro-domain processing between the pro- and metalloprotease domain, but nevertheless, cause significantly reduced catalytic activity. Thus, our results have uncovered a novel functionally relevant PC processing site in the N-terminal part of the pro-domain that is important for the activation of these ADAMs. These results suggest that the novel PC site is part of a general mechanism underlying proenzyme maturation of ADAMs that is independent of processing at the previously identified canonical Furin cleavage site.
Asunto(s)
Proteínas ADAM/genética , Secretasas de la Proteína Precursora del Amiloide/genética , Proteínas de la Membrana/genética , Mutación , Procesamiento Proteico-Postraduccional , Proteína ADAM10 , Proteína ADAM17 , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Membrana Celular/metabolismo , Dicroismo Circular , Clonación Molecular , Escherichia coli/metabolismo , Fibroblastos/metabolismo , Furina/química , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Proteínas Recombinantes/genética , Homología de Secuencia de AminoácidoRESUMEN
Phospholemman (FXYD1) is a single-transmembrane protein regulator of Na,K-ATPase, expressed strongly in heart, skeletal muscle, and brain and phosphorylated by protein kinases A and C at Ser-68 and Ser-63, respectively. Binding of FXYD1 reduces Na,K-ATPase activity, and phosphorylation at Ser-68 or Ser-63 relieves the inhibition. Despite the accumulated information on physiological effects, whole cell studies provide only limited information on molecular mechanisms. As a complementary approach, we utilized purified human Na,K-ATPase (α1ß1 and α2ß1) reconstituted with FXYD1 or mutants S63E, S68E, and S63E,S68E that mimic phosphorylation at Ser-63 and Ser-68. Compared with control α1ß1, FXYD1 reduces Vmax and turnover rate and raises K0.5Na. The phosphomimetic mutants reverse these effects and reduce K0.5Na below control K0.5Na. Effects on α2ß1 are similar but smaller. Experiments in proteoliposomes reconstituted with α1ß1 show analogous effects of FXYD1 on K0.5Na, which are abolished by phosphomimetic mutants and also by increasing mole fractions of DOPS in the proteoliposomes. Stopped-flow experiments using the dye RH421 show that FXYD1 slows the conformational transition E2(2K)ATP â E1(3Na)ATP but does not affect 3NaE1P â E2P3Na. This regulatory effect is explained simply by molecular modeling, which indicates that a cytoplasmic helix (residues 60-70) docks between the αN and αP domains in the E2 conformation, but docking is weaker in E1 (also for phosphomimetic mutants). Taken together with previous work showing that FXYD1 also raises binding affinity for the Na(+)-selective site III, these results provide a rather comprehensive picture of the regulatory mechanism of FXYD1 that complements the physiological studies.
Asunto(s)
Proteínas de la Membrana/química , Mutación Missense , Fosfoproteínas/química , ATPasa Intercambiadora de Sodio-Potasio/química , Sustitución de Aminoácidos , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismoRESUMEN
The ability to tune the light-absorption properties of chlorophylls by their protein environment is the key to the robustness and high efficiency of photosynthetic light-harvesting proteins. Unfortunately, the intricacy of the natural complexes makes it very difficult to identify and isolate specific protein-pigment interactions that underlie the spectral-tuning mechanisms. Herein we identify and demonstrate the tuning mechanism of chlorophyll spectra in typeâ II water-soluble chlorophyll binding proteins from Brassicaceae (WSCPs). By comparing the molecular structures of two natural WSCPs we correlate a shift in the chlorophyll red absorption band with deformation of its tetrapyrrole macrocycle that is induced by changing the position of a nearby tryptophan residue. We show by a set of reciprocal point mutations that this change accounts for up to 2/3 of the observed spectral shift between the two natural variants.
Asunto(s)
Proteínas de Unión a Clorofila/química , Clorofila/química , Luz , Brassicaceae/química , Proteínas de Unión a Clorofila/genética , Modelos Moleculares , Estructura Molecular , Mutación PuntualRESUMEN
Modification of acyl carrier proteins (ACP) or domains by the covalent binding of a 4'-phosphopantetheine (4'-PP) moiety is a fundamental condition for activation of fatty acid synthases (FASes) and polyketide synthases (PKSes). Binding of 4'-PP is mediated by 4' phosphopantetheinyl transfersases (PPTases). Mycobacterium tuberculosis (Mtb) possesses two essential PPTases: acyl carrier protein synthase (Mtb AcpS), which activates the multidomain fatty acid synthase I (FAS I), and Mtb PptT, an Sfp-type broad spectrum PPTase that activates PKSes. To date, it has not been determined which of the two Mtb PPTases, AcpS or PptT, activates the meromycolate extension ACP, Mtb AcpM, en route to the production of mycolic acids, the main components of the mycobacterial cell wall. In this study, we tested the enzymatic activation of a highly purified Mtb apo-AcpM to Mtb holo-AcpM by either Mtb PptT or Mtb AcpS. By using SDS-PAGE band shift assay and mass spectrometry analysis, we found that Mtb PptT is the PPTase that activates Mtb AcpM. We measured the catalytic activity of Mtb PptT toward CoA, using an activation assay of a blue pigment synthase, BpsA (a nonribosomal peptide synthase, NRPS). BpsA activation by Mtb PptT was inhibited by Mtb apo-AcpM through competition for CoA, in accord with Mtb AcpM activation. A structural model of the putative interaction between Mtb PptT and Mtb AcpM suggests that both hydrophobic and electrostatic interactions stabilize this complex. To conclude, activation of Mtb AcpM by Mtb PptT reveals a potential target of the multistep mycolic acid biosynthesis.
Asunto(s)
Proteínas Bacterianas/química , Proteínas Portadoras/química , Mycobacterium tuberculosis/enzimología , Ácidos Micólicos/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/química , Secuencia de Aminoácidos , Coenzima A/química , Activación Enzimática , Modelos Moleculares , Datos de Secuencia Molecular , Mycobacterium bovis/enzimología , Péptido Sintasas/química , Unión Proteica , Proteínas Recombinantes/químicaRESUMEN
We have developed a collagen-mRNA platform for controllable protein production that is intended to be less prone to the problems associated with commonly used mRNA therapy as well as with collagen skin-healing procedures. A collagen mimic was constructed according to a recombinant method and was used as scaffold for translating mRNA chains into proteins. Cysteines were genetically inserted into the collagen chain at positions allowing efficient ribosome translation activity while minimizing mRNA misfolding and degradation. Enhanced green fluorescence protein (eGFP) mRNA bound to collagen was successfully translated by cell-free Escherichia coli ribosomes. This system enabled an accurate control of specific protein synthesis by monitoring expression time and level. Luciferase-mRNA was also translated on collagen scaffold by eukaryotic cell extracts. Thus we have demonstrated the feasibility of controllable protein synthesis on collagen scaffolds by ribosomal machinery.
Asunto(s)
Sistema Libre de Células , Colágeno/genética , Biosíntesis de Proteínas , ARN Mensajero/genética , Sistema Libre de Células/metabolismo , Colágeno/química , Escherichia coli/genética , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Luciferasas/análisis , Luciferasas/genética , Sustancias Luminiscentes/análisis , Sustancias Luminiscentes/metabolismo , Proteínas de Unión a Maltosa/química , Proteínas de Unión a Maltosa/genética , Multimerización de Proteína , Estabilidad Proteica , ARN Mensajero/química , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genéticaRESUMEN
Mutations in the SCN8A gene, encoding the voltage-gated sodium channel NaV1.6, are associated with a range of neurodevelopmental syndromes. The p.(Gly1625Arg) (G1625R) mutation was identified in a patient diagnosed with developmental epileptic encephalopathy (DEE). While most of the characterized DEE-associated SCN8A mutations were shown to cause a gain-of-channel function, we show that the G1625R variant, positioned within the S4 segment of domain IV, results in complex effects. Voltage-clamp analyses of NaV1.6G1625R demonstrated a mixture of gain- and loss-of-function properties, including reduced current amplitudes, increased time constant of fast voltage-dependent inactivation, a depolarizing shift in the voltage dependence of activation and inactivation, and increased channel availability with high-frequency repeated depolarization. Current-clamp analyses in transfected cultured neurons revealed that these biophysical properties caused a marked reduction in the number of action potentials when firing was driven by the transfected mutant NaV1.6. Accordingly, computational modeling of mature cortical neurons demonstrated a mild decrease in neuronal firing when mimicking the patients' heterozygous SCN8A expression. Structural modeling of NaV1.6G1625R suggested the formation of a cation-π interaction between R1625 and F1588 within domain IV. Double-mutant cycle analysis revealed that this interaction affects the voltage dependence of inactivation in NaV1.6G1625R. Together, our studies demonstrate that the G1625R variant leads to a complex combination of gain and loss of function biophysical changes that result in an overall mild reduction in neuronal firing, related to the perturbed interaction network within the voltage sensor domain, necessitating personalized multi-tiered analysis for SCN8A mutations for optimal treatment selection.