Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(17): 4377-4379, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34416145

RESUMEN

Greater understanding of the events preceding neurodegeneration is needed to design effective preventive and therapeutic strategies. In this issue of Cell, Bowles et al. (2021) report cerebral organoids that reveal early events in frontotemporal dementia pathogenesis due to mutations in microtubule-associated protein tau (MAPT), shedding light on a novel mechanism involving abnormal splicing and glutamate signaling.


Asunto(s)
Demencia Frontotemporal , Organoides , Humanos , Mutación , Proteínas tau/genética
2.
Nature ; 602(7895): 112-116, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35046577

RESUMEN

The biological basis of male-female brain differences has been difficult to elucidate in humans. The most notable morphological difference is size, with male individuals having on average a larger brain than female individuals1,2, but a mechanistic understanding of how this difference arises remains unknown. Here we use brain organoids3 to show that although sex chromosomal complement has no observable effect on neurogenesis, sex steroids-namely androgens-lead to increased proliferation of cortical progenitors and an increased neurogenic pool. Transcriptomic analysis and functional studies demonstrate downstream effects on histone deacetylase activity and the mTOR pathway. Finally, we show that androgens specifically increase the neurogenic output of excitatory neuronal progenitors, whereas inhibitory neuronal progenitors are not increased. These findings reveal a role for androgens in regulating the number of excitatory neurons and represent a step towards understanding the origin of sex-related brain differences in humans.


Asunto(s)
Andrógenos/farmacología , Encéfalo/citología , Excitabilidad Cortical/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Organoides/citología , Organoides/efectos de los fármacos , Caracteres Sexuales , Potenciales de Acción/efectos de los fármacos , Andrógenos/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Encéfalo/metabolismo , Recuento de Células , Femenino , Perfilación de la Expresión Génica , Histona Desacetilasas/genética , Humanos , Masculino , Inhibición Neural/efectos de los fármacos , Neuroglía/citología , Neuroglía/efectos de los fármacos , Tamaño de los Órganos/efectos de los fármacos , Organoides/enzimología , Organoides/metabolismo , Células Madre/citología , Células Madre/efectos de los fármacos , Serina-Treonina Quinasas TOR/genética
3.
Physiol Rev ; 99(2): 1047-1078, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30648461

RESUMEN

Cellular senescence is a permanent state of cell cycle arrest that occurs in proliferating cells subjected to different stresses. Senescence is, therefore, a cellular defense mechanism that prevents the cells to acquire an unnecessary damage. The senescent state is accompanied by a failure to re-enter the cell cycle in response to mitogenic stimuli, an enhanced secretory phenotype and resistance to cell death. Senescence takes place in several tissues during different physiological and pathological processes such as tissue remodeling, injury, cancer, and aging. Although senescence is one of the causative processes of aging and it is responsible of aging-related disorders, senescent cells can also play a positive role. In embryogenesis and tissue remodeling, senescent cells are required for the proper development of the embryo and tissue repair. In cancer, senescence works as a potent barrier to prevent tumorigenesis. Therefore, the identification and characterization of key features of senescence, the induction of senescence in cancer cells, or the elimination of senescent cells by pharmacological interventions in aging tissues is gaining consideration in several fields of research. Here, we describe the known key features of senescence, the cell-autonomous, and noncell-autonomous regulators of senescence, and we attempt to discuss the functional role of this fundamental process in different contexts in light of the development of novel therapeutic targets.


Asunto(s)
Envejecimiento/fisiología , Transformación Celular Neoplásica/metabolismo , Senescencia Celular/fisiología , Neoplasias/metabolismo , Cicatrización de Heridas/fisiología , Envejecimiento/metabolismo , Animales , Proliferación Celular/fisiología , Humanos
4.
Proc Natl Acad Sci U S A ; 120(4): e2217840120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36656861

RESUMEN

BAP1 is a powerful tumor suppressor gene characterized by haplo insufficiency. Individuals carrying germline BAP1 mutations often develop mesothelioma, an aggressive malignancy of the serosal layers covering the lungs, pericardium, and abdominal cavity. Intriguingly, mesotheliomas developing in carriers of germline BAP1 mutations are less aggressive, and these patients have significantly improved survival. We investigated the apparent paradox of a tumor suppressor gene that, when mutated, causes less aggressive mesotheliomas. We discovered that mesothelioma biopsies with biallelic BAP1 mutations showed loss of nuclear HIF-1α staining. We demonstrated that during hypoxia, BAP1 binds, deubiquitylates, and stabilizes HIF-1α, the master regulator of the hypoxia response and tumor cell invasion. Moreover, primary cells from individuals carrying germline BAP1 mutations and primary cells in which BAP1 was silenced using siRNA had reduced HIF-1α protein levels in hypoxia. Computational modeling and co-immunoprecipitation experiments revealed that mutations of BAP1 residues I675, F678, I679, and L691 -encompassing the C-terminal domain-nuclear localization signal- to A, abolished the interaction with HIF-1α. We found that BAP1 binds to the N-terminal region of HIF-1α, where HIF-1α binds DNA and dimerizes with HIF-1ß forming the heterodimeric transactivating complex HIF. Our data identify BAP1 as a key positive regulator of HIF-1α in hypoxia. We propose that the significant reduction of HIF-1α activity in mesothelioma cells carrying biallelic BAP1 mutations, accompanied by the significant reduction of HIF-1α activity in hypoxic tissues containing germline BAP1 mutations, contributes to the reduced aggressiveness and improved survival of mesotheliomas developing in carriers of germline BAP1 mutations.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia , Mesotelioma Maligno , Mesotelioma , Ubiquitina Tiolesterasa , Humanos , Heterocigoto , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Mesotelioma/genética , Mesotelioma/metabolismo , Mesotelioma Maligno/genética , Mesotelioma Maligno/complicaciones , Mutación , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa/metabolismo
6.
PLoS Biol ; 19(12): e3001480, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34914695

RESUMEN

Mutations in leucine-rich repeat kinase 2 (LRRK2) cause autosomal dominant Parkinson disease (PD), while polymorphic LRRK2 variants are associated with sporadic PD. PD-linked mutations increase LRRK2 kinase activity and induce neurotoxicity in vitro and in vivo. The small GTPase Rab8a is a LRRK2 kinase substrate and is involved in receptor-mediated recycling and endocytic trafficking of transferrin, but the effect of PD-linked LRRK2 mutations on the function of Rab8a is poorly understood. Here, we show that gain-of-function mutations in LRRK2 induce sequestration of endogenous Rab8a to lysosomes in overexpression cell models, while pharmacological inhibition of LRRK2 kinase activity reverses this phenotype. Furthermore, we show that LRRK2 mutations drive association of endocytosed transferrin with Rab8a-positive lysosomes. LRRK2 has been nominated as an integral part of cellular responses downstream of proinflammatory signals and is activated in microglia in postmortem PD tissue. Here, we show that iPSC-derived microglia from patients carrying the most common LRRK2 mutation, G2019S, mistraffic transferrin to lysosomes proximal to the nucleus in proinflammatory conditions. Furthermore, G2019S knock-in mice show a significant increase in iron deposition in microglia following intrastriatal LPS injection compared to wild-type mice, accompanied by striatal accumulation of ferritin. Our data support a role of LRRK2 in modulating iron uptake and storage in response to proinflammatory stimuli in microglia.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteínas de Unión al GTP rab/metabolismo , Anciano , Animales , Transporte Biológico , Cuerpo Estriado , Mutación con Ganancia de Función/genética , Células HEK293 , Humanos , Hierro/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Lisosomas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía , Persona de Mediana Edad , Mutación , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Proteínas Serina-Treonina Quinasas , Transferrina/metabolismo , Transferrinas/genética , Transferrinas/metabolismo , Proteínas de Unión al GTP rab/genética
7.
Int J Cancer ; 152(2): 267-275, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36005450

RESUMEN

The pertuzumab study in the neoadjuvant setting for HER2+ nonmetastatic breast cancer in Australia (PeRSIA-ML39622) is an analysis of safety and effectiveness data from the pertuzumab patient registry. Although the prognosis of patients with early stage HER2+ breast cancer has been greatly improved by advances in chemotherapy approximately 25% to 30% of patients develop recurrent disease. Our study aimed to examine the effectiveness of neoadjuvant pertuzumab on surgical outcomes, describe the medium-term effectiveness outcomes of patients treated with pertuzumab, and describe the planned and actual anticancer treatment regimens that patients received. Deidentified data were collected from the patients' medical records and entered into REDCap, between March 2018 and July 2019 (n = 95). The adverse events (AEs) reported most frequently were diarrhea (20; 21.1%), rash (4; 4.2%), and LVSD (4; 4.2%; two patients during neoadjuvant treatment and two patients during adjuvant treatment). AEs, ≥Grade 3 were diarrhea (2; 2.1%) and LVSD (1; 1.1%). Following surgery, a breast pathological complete response (bpCR) was achieved in 65 patients (70.7%; 95% CI: 60.2%-79.7%) and total pathological complete response (tpCR) in 59 patients (64.1%; 95% CI: 53.4%-73.9%). All patients who did not achieve a tpCR obtained a partial response (33/92, 35.9%). Our study is the first to capture real-world data on the use of pertuzumab in the neoadjuvant setting in Australia. The effectiveness and safety data are consistent with those reported in clinical trials of pertuzumab in patients with HER2+ breast cancer, with no new safety concerns.


Asunto(s)
Neoplasias de la Mama , Terapia Neoadyuvante , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Persia , Australia , Diarrea/inducido químicamente
8.
Cell Commun Signal ; 21(1): 76, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37055829

RESUMEN

Androgen deprivation therapy (ADT) is a standard therapy for prostate cancer (PCa). Though disseminated disease is initially sensitive to ADT, an important fraction of the patients progresses to castration-resistant prostate cancer (CRPC). For this reason, the identification of novel effective therapies for treating CRPC is needed. Immunotherapeutic strategies focused on macrophages as antitumor effectors, directly enhancing their tumoricidal potential at the tumor microenvironment or their adoptive transfer after ex vivo activation, have arisen as promising therapies in several cancer types. Despite several approaches centered on the activation of tumor-associated macrophages (TAMs) in PCa are under investigation, to date there is no evidence of clinical benefit in patients. In addition, the evidence of the effectiveness of macrophage adoptive transfer on PCa is poor. Here we find that VSSP, an immunomodulator of the myeloid system, decreases TAMs and inhibits prostatic tumor growth when administered to castrated Pten-deficient prostate tumor-bearing mice. In mice bearing castration-resistant Ptenpc-/-; Trp53pc-/- tumors, VSSP administration showed no effect. Nevertheless, adoptive transfer of macrophages activated ex vivo with VSSP inhibited Ptenpc-/-; Trp53pc-/- tumor growth through reduction of angiogenesis and tumor cell proliferation and induction of senescence. Taken together, our results highlight the rationale of exploiting macrophage functional programming as a promising strategy for CRPC therapy, with particular emphasis on ex vivo-activated proinflammatory macrophage adoptive transfer. Video abstract.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Humanos , Masculino , Ratones , Animales , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Antagonistas de Andrógenos/farmacología , Macrófagos , Próstata/patología , Proliferación Celular , Línea Celular Tumoral , Microambiente Tumoral
9.
Nature ; 546(7659): 549-553, 2017 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-28614305

RESUMEN

BRCA1-associated protein 1 (BAP1) is a potent tumour suppressor gene that modulates environmental carcinogenesis. All carriers of inherited heterozygous germline BAP1-inactivating mutations (BAP1+/-) developed one and often several BAP1-/- malignancies in their lifetime, mostly malignant mesothelioma, uveal melanoma, and so on. Moreover, BAP1-acquired biallelic mutations are frequent in human cancers. BAP1 tumour suppressor activity has been attributed to its nuclear localization, where it helps to maintain genome integrity. The possible activity of BAP1 in the cytoplasm is unknown. Cells with reduced levels of BAP1 exhibit chromosomal abnormalities and decreased DNA repair by homologous recombination, indicating that BAP1 dosage is critical. Cells with extensive DNA damage should die and not grow into malignancies. Here we discover that BAP1 localizes at the endoplasmic reticulum. Here, it binds, deubiquitylates, and stabilizes type 3 inositol-1,4,5-trisphosphate receptor (IP3R3), modulating calcium (Ca2+) release from the endoplasmic reticulum into the cytosol and mitochondria, promoting apoptosis. Reduced levels of BAP1 in BAP1+/- carriers cause reduction both of IP3R3 levels and of Ca2+ flux, preventing BAP1+/- cells that accumulate DNA damage from executing apoptosis. A higher fraction of cells exposed to either ionizing or ultraviolet radiation, or to asbestos, survive genotoxic stress, resulting in a higher rate of cellular transformation. We propose that the high incidence of cancers in BAP1+/- carriers results from the combined reduced nuclear and cytoplasmic activities of BAP1. Our data provide a mechanistic rationale for the powerful ability of BAP1 to regulate gene-environment interaction in human carcinogenesis.


Asunto(s)
Calcio/metabolismo , Transformación Celular Neoplásica , Citoplasma/metabolismo , Retículo Endoplásmico/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Mitocondrias/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Apoptosis/genética , Amianto/toxicidad , Señalización del Calcio , Núcleo Celular/metabolismo , Supervivencia Celular , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/efectos de la radiación , Células Cultivadas , Daño del ADN , Epitelio , Fibroblastos , Interacción Gen-Ambiente , Humanos , Unión Proteica , Estabilidad Proteica , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética , Ubiquitina/metabolismo , Ubiquitina Tiolesterasa/deficiencia , Ubiquitina Tiolesterasa/genética
10.
Int J Mol Sci ; 22(9)2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34067060

RESUMEN

Recent findings suggest that epithelial to mesenchymal transition (EMT), a key step during heart development, is involved in cardiac tissue repair following myocardial infarction (MI). MicroRNAs (miRNAs) act as key regulators in EMT processes; however, the mechanisms by which miRNAs target epicardial EMT remain largely unknown. Here, by using an in vitro model of epicardial EMT, we investigated the role of miRNAs as regulators of this process and their potential targets. EMT was induced in murine epicardial-mesothelial cells (EMCs) through TGF ß1 treatment for 48, 72, and 96 h as indicated by the expression of EMT-related genes by qRT-PCR, WB, and immunofluorescence. Further, enhanced expression of stemness genes was also detected. Among several EMT-related miRNAs, miR-200c-3p expression resulted as the most strongly suppressed. Interestingly, we also found a significant upregulation of Follistatin-related protein 1 (FSTL1), a miR-200c predicted target already identified as a potent cardiogenic factor produced by epicardial cells that promotes regeneration following MI. Dual-luciferase reporter assay demonstrated that miR-200c-3p directly targeted the 3'-untranslated region of FSTL1 in EMCs. Consistently, WB analysis showed that knockdown of miR-200c-3p significantly increased FSTL1 expression, whereas overexpression of miR-200c-3p counteracted TGF ß1-mediated FSTL1 upregulation. Importantly, FSTL1 silencing maintained epithelial features in EMCs, despite EMT induction by TGF ß1, and attenuated EMT-associated traits, including migration and stemness. In conclusion, epicardial FSTL1, an important cardiogenic factor in its secreted form, induces EMT, stemness, and migration of EMCs in a miR-200c-3p dependent pathway.


Asunto(s)
Transición Epitelial-Mesenquimal , Epitelio/metabolismo , Proteínas Relacionadas con la Folistatina/metabolismo , MicroARNs/metabolismo , Pericardio/patología , Animales , Biomarcadores/metabolismo , Transición Epitelial-Mesenquimal/genética , Femenino , Mesodermo/patología , Ratones Endogámicos C57BL , MicroARNs/genética , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Factor de Crecimiento Transformador beta1/farmacología
11.
Neurobiol Dis ; 141: 104948, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32434048

RESUMEN

Mutations in leucine-rich repeat kinase 2 (LRRK2) are an established cause of inherited Parkinson's disease (PD). LRRK2 is expressed in both neurons and glia in the central nervous system, but its physiological function(s) in each of these cell types is uncertain. Through sequential screens, we report a functional interaction between LRRK2 and Clathrin adaptor protein complex 2 (AP2). Analysis of LRRK2 KO tissue revealed a significant dysregulation of AP2 complex components, suggesting LRRK2 may act upstream of AP2. In line with this hypothesis, expression of LRRK2 was found to modify recruitment and phosphorylation of AP2. Furthermore, expression of LRRK2 containing the R1441C pathogenic mutation resulted in impaired clathrin-mediated endocytosis (CME). A decrease in activity-dependent synaptic vesicle endocytosis was also observed in neurons harboring an endogenous R1441C LRRK2 mutation. Alongside LRRK2, several PD-associated genes intersect with membrane-trafficking pathways. To investigate the genetic association between Clathrin-trafficking and PD, we used polygenetic risk profiling from IPDGC genome wide association studies (GWAS) datasets. Clathrin-dependent endocytosis genes were found to be associated with PD across multiple cohorts, suggesting common variants at these loci represent a cumulative risk factor for disease. Taken together, these findings suggest CME is a LRRK2-mediated, PD relevant pathway.


Asunto(s)
Complejo 2 de Proteína Adaptadora/metabolismo , Endocitosis , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Enfermedad de Parkinson/metabolismo , Animales , Células HEK293 , Humanos , Ratones , Neuronas/metabolismo , Fosforilación , Vesículas Sinápticas/metabolismo
12.
Hum Mol Genet ; 27(18): 3257-3271, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29917075

RESUMEN

Mutations in leucine-rich repeat kinase 2 (LRRK2) segregate with familial Parkinson's disease (PD) and genetic variation around LRRK2 contributes to risk of sporadic disease. Although knockout (KO) of Lrrk2 or knock-in of pathogenic mutations into the mouse germline does not result in a PD phenotype, several defects have been reported in the kidneys of Lrrk2 KO mice. To understand LRRK2 function in vivo, we used an unbiased approach to determine which protein pathways are affected in LRRK2 KO kidneys. We nominated changes in cytoskeletal-associated proteins, lysosomal proteases, proteins involved in vesicular trafficking and in control of protein translation. Changes were not seen in mice expressing the pathogenic G2019S LRRK2 mutation. Using cultured epithelial kidney cells, we replicated the accumulation of lysosomal proteases and demonstrated changes in subcellular distribution of the cation-independent mannose-6-phosphate receptor. These results show that loss of LRRK2 leads to co-ordinated responses in protein translation and trafficking and argue against a dominant negative role for the G2019S mutation.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Enfermedad de Parkinson/genética , Biosíntesis de Proteínas/genética , Proteómica , Animales , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Células Epiteliales/patología , Regulación de la Expresión Génica , Humanos , Riñón/metabolismo , Riñón/patología , Ratones , Ratones Noqueados , Mutación , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Fenotipo , Proteolisis , Receptor IGF Tipo 2/genética , Transducción de Señal
13.
Cell Mol Life Sci ; 74(3): 409-434, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27600680

RESUMEN

Cytoskeletal homeostasis is essential for the development, survival and maintenance of an efficient nervous system. Microtubules are highly dynamic polymers important for neuronal growth, morphology, migration and polarity. In cooperation with several classes of binding proteins, microtubules regulate long-distance intracellular cargo trafficking along axons and dendrites. The importance of a delicate interplay between cytoskeletal components is reflected in several human neurodegenerative disorders linked to abnormal microtubule dynamics, including Parkinson's disease (PD). Mounting evidence now suggests PD pathogenesis might be underlined by early cytoskeletal dysfunction. Advances in genetics have identified PD-associated mutations and variants in genes encoding various proteins affecting microtubule function including the microtubule-associated protein tau. In this review, we highlight the role of microtubules, their major posttranslational modifications and microtubule associated proteins in neuronal function. We then present key evidence on the contribution of microtubule dysfunction to PD. Finally, we discuss how regulation of microtubule dynamics with microtubule-targeting agents and deacetylase inhibitors represents a promising strategy for innovative therapeutic development.


Asunto(s)
Citoesqueleto/patología , Microtúbulos/patología , Enfermedad de Parkinson/patología , Animales , Axones/metabolismo , Axones/patología , Citoesqueleto/efectos de los fármacos , Citoesqueleto/genética , Citoesqueleto/metabolismo , Descubrimiento de Drogas , Humanos , Proteínas Asociadas a Microtúbulos/análisis , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/efectos de los fármacos , Microtúbulos/genética , Microtúbulos/metabolismo , Terapia Molecular Dirigida , Mutación , Neuronas/metabolismo , Neuronas/patología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Procesamiento Proteico-Postraduccional , Tubulina (Proteína)/análisis , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Proteínas tau/análisis , Proteínas tau/genética , Proteínas tau/metabolismo
14.
J Cell Physiol ; 232(7): 1835-1844, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27925196

RESUMEN

Sirtuins are conserved NAD+ -dependent deacylases. SIRT1 is a nuclear and cytoplasmic sirtuin involved in the control of histones a transcription factors function. SIRT3 is a mitochondrial protein, which regulates mitochondrial function. Although, both SIRT1 and SIRT3 have been implicated in resistance to cellular stress, the link between these two sirtuins has not been studied so far. Here we aimed to unravel: i) the role of SIRT1-SIRT3 axis for cellular response to oxidative stress and DNA damage; ii) how mammalian cells modulate such SIRT1-SIRT3 axis and which mechanisms are involved. Therefore, we analyzed the response to different stress stimuli in WT or SIRT1-silenced cell lines. Our results demonstrate that SIRT1-silenced cells are more resistant to H2 O2 and etoposide treatment showing decreased ROS accumulation, γ-H2AX phosphorylation, caspase-3 activation and PARP cleavage. Interestingly, we observed that SIRT1-silenced cells show an increased SIRT3 expression. To explore such a connection, we carried out luciferase assays on SIRT3 promoter demonstrating that SIRT1-silencing increases SIRT3 promoter activity and that such an effect depends on the presence of SP1 and ZF5 recognition sequences on SIRT3 promoter. Afterwards, we performed co-immunoprecipitation assays demonstrating that SIRT1 binds and deacetylates the transcription inhibitor ZF5 and that there is a decreased interaction between SP1 and ZF5 in SIRT1-silenced cells. Therefore, we speculate that acetylated ZF5 cannot bind and sequester SP1 that is free, then, to increase SIRT3 transcription. In conclusion, we demonstrate that cells with low SIRT1 levels can maintain their resistance and survival by increasing SIRT3 expression. J. Cell. Physiol. 232: 1835-1844, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Etopósido/farmacología , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Sirtuina 1/metabolismo , Sirtuina 3/metabolismo , Acetilación/efectos de los fármacos , Animales , Línea Celular Tumoral , Citoprotección/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Células HEK293 , Humanos , Espacio Intracelular/metabolismo , Ratones , Modelos Biológicos , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción Sp1/metabolismo
15.
J Transl Med ; 15(1): 58, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28298211

RESUMEN

BACKGROUND: Malignant mesothelioma (MM) is a very aggressive type of cancer, with a dismal prognosis and inherent resistance to chemotherapeutics. Development and evaluation of new therapeutic approaches is highly needed. Immunosuppressant FTY720, approved for multiple sclerosis treatment, has recently raised attention for its anti-tumor activity in a variety of cancers. However, its therapeutic potential in MM has not been evaluated yet. METHODS: Cell viability and anchorage-independent growth were evaluated in a panel of MM cell lines and human mesothelial cells (HM) upon FTY720 treatment to assess in vitro anti-tumor efficacy. The mechanism of action of FTY720 in MM was assessed by measuring the activity of phosphatase protein 2A (PP2A)-a major target of FTY720. The binding of the endogenous inhibitor SET to PP2A in presence of FTY720 was evaluated by immunoblotting and immunoprecipitation. Signaling and activation of programmed cell death were evaluated by immunoblotting and flow cytometry. A syngeneic mouse model was used to evaluate anti-tumor efficacy and toxicity profile of FTY720 in vivo. RESULTS: We show that FTY720 significantly suppressed MM cell viability and anchorage-independent growth without affecting normal HM cells. FTY720 inhibited the phosphatase activity of PP2A by displacement of SET protein, which appeared overexpressed in MM, as compared to HM cells. FTY720 promoted AKT dephosphorylation and Bcl-2 degradation, leading to induction of programmed cell death, as demonstrated by caspase-3 and PARP activation, as well as by cytochrome c and AIF intracellular translocation. Moreover, FTY720 administration in vivo effectively reduced tumor burden in mice without apparent toxicity. CONCLUSIONS: Our preclinical data indicate that FTY720 is a potentially promising therapeutic agent for MM treatment.


Asunto(s)
Clorhidrato de Fingolimod/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Mesotelioma/tratamiento farmacológico , Mesotelioma/patología , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Clorhidrato de Fingolimod/farmacología , Clorhidrato de Fingolimod/toxicidad , Mesotelioma Maligno , Ratones , Proteína Fosfatasa 2/metabolismo , Proteínas Supresoras de Tumor/metabolismo
16.
J Toxicol Environ Health B Crit Rev ; 19(5-6): 213-230, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27705545

RESUMEN

Similar to asbestos fibers, nonregulated mineral fibers can cause malignant mesothelioma (MM). Recently, increased proportions of women and young individuals with MM were identified in southern Nevada, suggesting that environmental exposure to carcinogenic fibers was causing the development of MM. Palygorskite, a fibrous silicate mineral with a history of possible carcinogenicity, is abundant in southern Nevada. In this study, our aim was to determine whether palygorskite was contributing to the development of MM in southern Nevada. While palygorskite, in vitro, displayed some cytotoxicity toward primary human mesothelial (HM) cells and reduced their viability, the effects were roughly half of those observed when using similar amounts of crocidolite asbestos. No Balb/c (0/19) or MexTAg (0/18) mice injected with palygorskite developed MM, while 3/16 Balb/c and 13/14 MexTAg mice injected with crocidolite did. Lack of MM development was associated with a decreased acute inflammatory response, as injection of palygorskite resulted in lower percentages of macrophages (p = .006) and neutrophils (p = .02) in the peritoneal cavity 3 d after exposure compared to injection of crocidolite. Additionally, compared to mice injected with crocidolite, palygorskite-injected mice had lower percentages of M2 (tumor-promoting) macrophages (p = .008) in their peritoneal cavities when exposed to fiber for several weeks. Our study indicates that palygorskite found in the environment in southern Nevada does not cause MM in mice, seemingly because palygorskite, in vivo, fails to elicit inflammation that is associated with MM development. Therefore, palygorskite is not a likely contributor to the MM cases observed in southern Nevada.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Neoplasias Pulmonares/patología , Compuestos de Magnesio/toxicidad , Mesotelioma/patología , Compuestos de Silicona/toxicidad , Animales , Células Epiteliales/citología , Neoplasias Pulmonares/inducido químicamente , Mesotelioma/inducido químicamente , Mesotelioma Maligno , Ratones , Ratones Endogámicos BALB C , Nevada
17.
Fluids Barriers CNS ; 21(1): 43, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773599

RESUMEN

The European Choroid plexus Scientific Forum (ECSF), held in Heidelberg, Germany between the 7th and 9th of November 2023, involved 21 speakers from eight countries. ECSF focused on discussing cutting-edge fundamental and medical research related to the development and functions of the choroid plexus and its implications for health, aging, and disease, including choroid plexus tumors. In addition to new findings in this expanding field, innovative approaches, animal models and 3D in vitro models were showcased to encourage further investigation into choroid plexus and cerebrospinal fluid roles.


Asunto(s)
Plexo Coroideo , Humanos , Animales , Líquido Cefalorraquídeo , Europa (Continente) , Neoplasias del Plexo Coroideo
18.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38931477

RESUMEN

Cancer cells modulate their metabolism, creating an acidic microenvironment that, in turn, can favor tumor progression and chemotherapy resistance. Tumor cells adopt strategies to survive a drop in extracellular pH (pHe). In the present manuscript, we investigated the contribution of mitochondrial sirtuin 3 (SIRT3) to the adaptation and survival of cancer cells to a low pHe. SIRT3-overexpressing and silenced breast cancer cells MDA-MB-231 and human embryonic kidney HEK293 cells were grown in buffered and unbuffered media at pH 7.4 and 6.8 for different times. mRNA expression of SIRT3 and CAVB, was measured by RT-PCR. Protein expression of SIRT3, CAVB and autophagy proteins was estimated by western blot. SIRT3-CAVB interaction was determined by immunoprecipitation and proximity ligation assays (PLA). Induction of autophagy was studied by western blot and TEM. SIRT3 overexpression increases the survival of both cell lines. Moreover, we demonstrated that SIRT3 controls intracellular pH (pHi) through the regulation of mitochondrial carbonic anhydrase VB (CAVB). Interestingly, we obtained similar results by using MC2791, a new SIRT3 activator. Our results point to the possibility of modulating SIRT3 to decrease the response and resistance of tumor cells to the acidic microenvironment and ameliorate the effectiveness of anticancer therapy.

19.
Nat Aging ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951692

RESUMEN

Accumulating senescent cells within tissues contribute to the progression of aging and age-related diseases. Botanical extracts, rich in phytoconstituents, present a useful resource for discovering therapies that could target senescence and thus improve healthspan. Here, we show that daily oral administration of a standardized extract of Salvia haenkei (Haenkenium (HK)) extended lifespan and healthspan of naturally aged mice. HK treatment inhibited age-induced inflammation, fibrosis and senescence markers across several tissues, as well as increased muscle strength and fur thickness compared with age-matched controls. We also found that HK treatment reduced acutely induced senescence by the chemotherapeutic agent doxorubicin, using p16LUC reporter mice. We profiled the constituent components of HK by mass spectrometry, and identified luteolin-the most concentrated flavonoid in HK-as a senomorphic compound. Mechanistically, by performing surface plasmon resonance and in situ proximity ligation assay, we found that luteolin disrupted the p16-CDK6 interaction. This work demonstrates that administration of HK promotes longevity in mice, possibly by modulating cellular senescence and by disrupting the p16-CDK6 interaction.

20.
J Cell Physiol ; 228(8): 1754-61, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23359486

RESUMEN

The following study demonstrated that, in in vitro differentiated neurons, SIRT1 silencing induced an increase of IGF-1 protein expression and secretion and of IGF-1R protein levels which, in turn, prolonged neuronal cell survival in presence of an apoptotic insult. On the contrary, SIRT1 overexpression increased cell death. In particular, IGF-1 and IGF-1R expression levels were negatively regulated by SIRT1. In SIRT1 silenced cells, the increase in IGF-1 and IGF-1R expression was associated to an increase in AKT and ERK1/2 phosphorylation. Moreover, neuronal differentiation was reduced in SIRT1 overexpressing cells and increased in SIRT1 silenced cells. We conclude that SIRT1 silenced neurons appear more committed to differentiation and more resistant to cell death through the activation of IGF-1 survival pathway.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/metabolismo , Neuronas/citología , Neuronas/metabolismo , Transducción de Señal , Sirtuina 1/antagonistas & inhibidores , Sirtuina 1/genética , Animales , Muerte Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular , Supervivencia Celular , Regulación hacia Abajo/genética , Ratones , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores , ARN Interferente Pequeño/genética , Ratas , Receptor IGF Tipo 1/antagonistas & inhibidores , Receptor IGF Tipo 1/metabolismo , Transducción de Señal/genética , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA