Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Biol Sci ; 291(2020): 20232946, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38565156

RESUMEN

Telomere length (TL) is a biomarker hypothesized to capture evolutionarily and ecologically important physiological costs of reproduction, infection and immunity. Few studies have estimated the relationships among infection status, immunity, TL and fitness in natural systems. The hypothesis that short telomeres predict reduced survival because they reflect costly consequences of infection and immune investment remains largely untested. Using longitudinal data from a free-living Soay sheep population, we tested whether leucocyte TL was predicted by infection with nematode parasites and antibody levels against those parasites. Helminth parasite burdens were positively associated with leucocyte TL in both lambs and adults, which is not consistent with TL reflecting infection costs. We found no association between TL and helminth-specific IgG levels in either young or old individuals which suggests TL does not reflect costs of an activated immune response or immunosenescence. Furthermore, we found no support for TL acting as a mediator of trade-offs between infection, immunity and subsequent survival in the wild. Our results suggest that while variation in TL could reflect short-term variation in resource investment or environmental conditions, it does not capture costs of infection and immunity, nor does it behave like a marker of an individual's helminth-specific antibody immune response.


Asunto(s)
Helmintos , Oveja Doméstica , Animales , Ovinos , Acortamiento del Telómero , Reproducción , Telómero
2.
Mol Ecol ; 33(9): e17335, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38549143

RESUMEN

Inbreeding depression is of major concern in declining populations, but relatively little is known about its genetic architecture in wild populations, such as the degree to which it is composed of large or small effect loci and their distribution throughout the genome. Here, we combine fitness and genomic data from a wild population of red deer to investigate the genomic distribution of inbreeding effects. Based on the runs of homozygosity (ROH)-based inbreeding coefficient, FROH, we use chromosome-specific inbreeding coefficients (FROHChr) to explore whether the effect of inbreeding varies between chromosomes. Under the assumption that within an individual the probability of being identical-by-descent is equal across all chromosomes, we used a multi-membership model to estimate the deviation of FROHChr from the average inbreeding effect. This novel approach ensures effect sizes are not overestimated whilst maximising the power of our available dataset of >3000 individuals genotyped on >35,000 autosomal SNPs. We find that most chromosomes confer a minor reduction in fitness-related traits, which when these effects are summed, results in the observed inbreeding depression in birth weight, survival and lifetime breeding success. However, no chromosomes had a significant detrimental effect compared to the overall effect of inbreeding, indicating no major effect loci. We conclude that in this population, inbreeding depression is likely the result of multiple mildly or moderately deleterious mutations spread across all chromosomes, which are difficult to detect with statistical confidence. Such mutations will be inefficiently purged, which may explain the persistence of inbreeding depression in this population.


Asunto(s)
Ciervos , Aptitud Genética , Genética de Población , Depresión Endogámica , Polimorfismo de Nucleótido Simple , Animales , Ciervos/genética , Depresión Endogámica/genética , Polimorfismo de Nucleótido Simple/genética , Modelos Genéticos , Endogamia , Homocigoto , Genotipo , Masculino , Femenino
3.
J Evol Biol ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39303006

RESUMEN

While senescence is a common occurrence in wild populations, not all traits decline with age simultaneously and some do not show any senes- cence. A lack of senescence in secondary sexual traits is thought to be due to their importance for reproductive success. However, if reproduc- tive success senesces, why would secondary sexual traits apparently not senesce? Here we explored this question in a wild population of red deer (Cervus elaphus) using antler form (number of points), a secondary sexual trait which shows little senescence, despite the occurrence of reproductive senescence. In line with expectations for traits that senesce, genetic vari- ance in antler form increased with age and selection weakened with age. Therefore, there was no indication that stronger selection on individu- als that survived to older ages was countering the dilution of selection due to fewer individuals being alive. Furthermore, the effect of selec- tive disappearance masking a slight decline in antler form in the oldest years was small. Interestingly, although genetic variance and positive se- lection of antler form were found, there was no evidence of a response to selection, supporting a genetic decoupling of antler senescence and re- productive senescence. Finally, a positive genetic covariance in antler form among age classes provides a possible explanation for the the lack of senescence. These findings suggest that antler form is under a genetic constraint that prevents it from senescing, providing an interesting evolu- tionary explanation for negligible senescence in a secondary sexual trait, and consequently, the existence of asynchrony in senescence among traits within populations.

4.
Heredity (Edinb) ; 132(4): 202-210, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38341521

RESUMEN

Estimates of narrow sense heritability derived from genomic data that contain related individuals may be biased due to the within-family effects such as dominance, epistasis and common environmental factors. However, for many wild populations, removal of related individuals from the data would result in small sample sizes. In 2013, Zaitlen et al. proposed a method to estimate heritability in populations that include close relatives by simultaneously fitting an identity-by-state (IBS) genomic relatedness matrix (GRM) and an identity-by-descent (IBD) GRM. The IBD GRM is identical to the IBS GRM, except relatedness estimates below a specified threshold are set to 0. We applied this method to a sample of 8557 wild Soay sheep from St. Kilda, with genotypic information for 419,281 single nucleotide polymorphisms. We aimed to see how this method would partition heritability into population-level (IBS) and family-associated (IBD) variance for a range of genetic architectures, and so we focused on a mixture of polygenic and monogenic traits. We also implemented a variant of the model in which the IBD GRM was replaced by a GRM constructed from SNPs with low minor allele frequency to examine whether any additive genetic variance is captured by rare alleles. Whilst the inclusion of the IBD GRM did not significantly improve the fit of the model for the monogenic traits, it improved the fit for some of the polygenic traits, suggesting that dominance, epistasis and/or common environment not already captured by the non-genetic random effects fitted in our models may influence these traits.


Asunto(s)
Genoma , Polimorfismo de Nucleótido Simple , Humanos , Ovinos/genética , Animales , Linaje , Genotipo , Genómica , Fenotipo , Oveja Doméstica/genética , Modelos Genéticos
5.
J Anim Ecol ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221784

RESUMEN

Life history trade-offs are one of the central tenets of evolutionary demography. Trade-offs, depicting negative covariances between individuals' life history traits, can arise from genetic constraints, or from a finite amount of resources that each individual has to allocate in a zero-sum game between somatic and reproductive functions. While theory predicts that trade-offs are ubiquitous, empirical studies have often failed to detect such negative covariances in wild populations. One way to improve the detection of trade-offs is by accounting for the environmental context, as trade-off expression may depend on environmental conditions. However, current methodologies usually search for fixed covariances between traits, thereby ignoring their context dependence. Here, we present a hierarchical multivariate 'covariance reaction norm' model, adapted from Martin (2023), to help detect context dependence in the expression of life-history trade-offs using demographic data. The method allows continuous variation in the phenotypic correlation between traits. We validate the model on simulated data for both intraindividual and intergenerational trade-offs. We then apply it to empirical datasets of yellow-bellied marmots (Marmota flaviventer) and Soay sheep (Ovis aries) as a proof-of-concept showing that new insights can be gained by applying our methodology, such as detecting trade-offs only in specific environments. We discuss its potential for application to many of the existing long-term demographic datasets and how it could improve our understanding of trade-off expression in particular, and life history theory in general.

6.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33876756

RESUMEN

Telomere length (TL) is considered an important biomarker of whole-organism health and aging. Across humans and other vertebrates, short telomeres are associated with increased subsequent mortality risk, but the processes responsible for this correlation remain uncertain. A key unanswered question is whether TL-mortality associations arise due to positive effects of genes or early-life environment on both an individual's average lifetime TL and their longevity, or due to more immediate effects of environmental stressors on within-individual TL loss and increased mortality risk. Addressing this question requires longitudinal TL and life history data across the entire lifetimes of many individuals, which are difficult to obtain for long-lived species like humans. Using longitudinal data and samples collected over nearly two decades, as part of a long-term study of wild Soay sheep, we dissected an observed positive association between TL and subsequent survival using multivariate quantitative genetic models. We found no evidence that telomere attrition was associated with increased mortality risk, suggesting that TL is not an important marker of biological aging or exposure to environmental stress in our study system. Instead, we find that among-individual differences in average TL are associated with increased lifespan. Our analyses suggest that this correlation between an individual's average TL and lifespan has a genetic basis. This demonstrates that TL has the potential to evolve under natural conditions, and suggests an important role of genetics underlying the widespread observation that short telomeres predict mortality.


Asunto(s)
Variación Genética , Longevidad , Ovinos/genética , Homeostasis del Telómero , Animales , Ovinos/crecimiento & desarrollo , Ovinos/fisiología
7.
Heredity (Edinb) ; 130(4): 242-250, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36801920

RESUMEN

The distribution of runs of homozygosity (ROH) may be shaped by a number of interacting processes such as selection, recombination and population history, but little is known about the importance of these mechanisms in shaping ROH in wild populations. We combined an empirical dataset of >3000 red deer genotyped at >35,000 genome-wide autosomal SNPs and evolutionary simulations to investigate the influence of each of these factors on ROH. We assessed ROH in a focal and comparison population to investigate the effect of population history. We investigated the role of recombination using both a physical map and a genetic linkage map to search for ROH. We found differences in ROH distribution between both populations and map types indicating that population history and local recombination rate have an effect on ROH. Finally, we ran forward genetic simulations with varying population histories, recombination rates and levels of selection, allowing us to further interpret our empirical data. These simulations showed that population history has a greater effect on ROH distribution than either recombination or selection. We further show that selection can cause genomic regions where ROH is common, only when the effective population size (Ne) is large or selection is particularly strong. In populations having undergone a population bottleneck, genetic drift can outweigh the effect of selection. Overall, we conclude that in this population, genetic drift resulting from a historical population bottleneck is most likely to have resulted in the observed ROH distribution, with selection possibly playing a minor role.


Asunto(s)
Ciervos , Endogamia , Animales , Ciervos/genética , Homocigoto , Genoma , Genotipo , Recombinación Genética , Polimorfismo de Nucleótido Simple
8.
J Anim Ecol ; 92(9): 1869-1880, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37403651

RESUMEN

Gastrointestinal nematode (GIN) parasites play an important role in the ecological dynamics of many animal populations. Recent studies suggest that fine-scale spatial variation in GIN infection dynamics is important in wildlife systems, but the environmental drivers underlying this variation remain poorly understood. We used data from over two decades of GIN parasite egg counts, host space use, and spatial vegetation data from a long-term study of Soay sheep on St Kilda to test how spatial autocorrelation and vegetation in an individual's home range predict parasite burden across three age groups. We developed a novel approach to quantify the plant functional traits present in a home range to describe the quality of vegetation present. Effects of vegetation and space varied between age classes. In immature lambs, strongyle parasite faecal egg counts (FEC) were spatially structured, being highest in the north and south of our study area. Independent of host body weight and spatial autocorrelation, plant functional traits predicted parasite egg counts. Higher egg counts were associated with more digestible and preferred plant functional traits, suggesting the association could be driven by host density and habitat preference. In contrast, we found no evidence that parasite FEC were related to plant functional traits in the host home range in yearlings or adult sheep. Adult FEC were spatially structured, with highest burdens in the north-east of our study area, while yearling FEC showed no evidence of spatial structuring. Parasite burdens in immature individuals appear more readily influenced by fine-scale spatial variation in the environment, highlighting the importance of such heterogeneity for our understanding of wildlife epidemiology and health. Our findings support the importance of fine-scale environmental variation for wildlife disease ecology and provides new evidence that such effects may vary across demographic groups within a population.


Asunto(s)
Nematodos , Infecciones por Nematodos , Parásitos , Enfermedades de las Ovejas , Animales , Ovinos , Herbivoria , Infecciones por Nematodos/epidemiología , Infecciones por Nematodos/veterinaria , Animales Salvajes , Heces/parasitología , Enfermedades de las Ovejas/parasitología , Factores de Edad
9.
Biol Lett ; 19(7): 20230050, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37433328

RESUMEN

Early- versus late-life trade-offs are a central prediction of life-history theory that are expected to shape the evolution of ageing. While ageing is widely observed in wild vertebrates, evidence that early-late trade-offs influence ageing rates remains limited. Vertebrate reproduction is a complex, multi-stage process, yet few studies have examined how different aspects of early-life reproductive allocation shape late-life performance and ageing. Here, we use longitudinal data from a 36-year study of wild Soay sheep to show that early-life reproduction predicts late-life reproductive performance in a trait-dependent manner. Females that started breeding earlier showed more rapid declines in annual breeding probability with age, consistent with a trade-off. However, age-related declines in offspring first-year survival and birth weight were not associated with early-life reproduction. Selective disappearance was evident in all three late-life reproductive measures, with longer-lived females having higher average performance. Our results provide mixed support for early-late reproductive trade-offs and show that the way early-life reproduction shapes late-life performance and ageing can differ among reproductive traits.


Asunto(s)
Envejecimiento , Mamíferos , Femenino , Animales , Ovinos , Peso al Nacer , Fenotipo , Reproducción
10.
Proc Natl Acad Sci U S A ; 117(50): 31969-31978, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33257553

RESUMEN

Temporal variation in natural selection is predicted to strongly impact the evolution and demography of natural populations, with consequences for the rate of adaptation, evolution of plasticity, and extinction risk. Most of the theory underlying these predictions assumes a moving optimum phenotype, with predictions expressed in terms of the temporal variance and autocorrelation of this optimum. However, empirical studies seldom estimate patterns of fluctuations of an optimum phenotype, precluding further progress in connecting theory with observations. To bridge this gap, we assess the evidence for temporal variation in selection on breeding date by modeling a fitness function with a fluctuating optimum, across 39 populations of 21 wild animals, one of the largest compilations of long-term datasets with individual measurements of trait and fitness components. We find compelling evidence for fluctuations in the fitness function, causing temporal variation in the magnitude, but not the direction of selection. However, fluctuations of the optimum phenotype need not directly translate into variation in selection gradients, because their impact can be buffered by partial tracking of the optimum by the mean phenotype. Analyzing individuals that reproduce in consecutive years, we find that plastic changes track movements of the optimum phenotype across years, especially in bird species, reducing temporal variation in directional selection. This suggests that phenological plasticity has evolved to cope with fluctuations in the optimum, despite their currently modest contribution to variation in selection.


Asunto(s)
Aves/fisiología , Mamíferos/fisiología , Modelos Genéticos , Reproducción/genética , Selección Genética/fisiología , Animales , Evolución Biológica , Conjuntos de Datos como Asunto , Aptitud Genética , Factores de Tiempo
11.
Ecol Lett ; 25(4): 828-838, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35050541

RESUMEN

Genes within the major histocompatibility complex (MHC) are the most variable identified in vertebrates. Pathogen-mediated selection is believed to be the main force maintaining MHC diversity. However, relatively few studies have demonstrated contemporary selection on MHC genes. Here, we examine associations between MHC variation and several fitness measurements including total fitness and five fitness components, in 3400 wild Soay sheep (Ovis aries) monitored between 1989 and 2012. In terms of total fitness, measured as lifetime breeding success of all individuals born, we found haplotypes named C and D were associated with decreased and increased male total fitness respectively. In terms of fitness components, juvenile survival was associated with haplotype divergence while individual haplotypes (C, D and F) were associated with adult fitness components. Consistent with the increased male total fitness, the rarest haplotype D has increased in frequency throughout the study period more than expected under neutral expectations. Our results demonstrate that contemporary natural selection is acting on MHC class II genes in Soay sheep and that the mode of selection on specific fitness components can be different mode from selection on total fitness.


Asunto(s)
Complejo Mayor de Histocompatibilidad , Selección Genética , Alelos , Animales , Variación Genética , Haplotipos , Complejo Mayor de Histocompatibilidad/genética , Masculino , Ovinos/genética
12.
Proc Biol Sci ; 289(1977): 20220487, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35765835

RESUMEN

Small effective population sizes and active inbreeding can lead to inbreeding depression due to deleterious recessive mutations exposed in the homozygous state. The Thoroughbred racehorse has low levels of population genetic diversity, but the effects of genomic inbreeding in the population are unknown. Here, we quantified inbreeding based on runs of homozygosity (ROH) using 297 K SNP genotypes from 6128 horses born in Europe and Australia, of which 13.2% were unraced. We show that a 10% increase in inbreeding (FROH) is associated with a 7% lower probability of ever racing. Moreover, a ROH-based genome-wide association study identified a haplotype on ECA14 which, in its homozygous state, is linked to a 32.1% lower predicted probability of ever racing, independent of FROH. The haplotype overlaps a candidate gene, EFNA5, that is highly expressed in cartilage tissue, which when damaged is one of the most common causes of catastrophic musculoskeletal injury in racehorses. Genomics-informed breeding aiming to reduce inbreeding depression and avoid damaging haplotype carrier matings will improve population health and racehorse welfare.


Asunto(s)
Depresión Endogámica , Animales , Estudio de Asociación del Genoma Completo/veterinaria , Caballos/genética , Endogamia , Polimorfismo de Nucleótido Simple , Probabilidad
13.
Mol Ecol ; 31(4): 1281-1298, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34878674

RESUMEN

Sexually selected traits show large variation and rapid evolution across the animal kingdom, yet genetic variation often persists within populations despite apparent directional selection. A key step in solving this long-standing paradox is to determine the genetic architecture of sexually selected traits to understand evolutionary drivers and constraints at the genomic level. Antlers are a form of sexual weaponry in male red deer (Cervus elaphus). On the island of Rum, Scotland, males with larger antlers have increased breeding success, yet there has been no evidence of any response to selection at the genetic level. To try and understand the mechanisms underlying this observation, we investigate the genetic architecture of ten antler traits and their principal components using genomic data from >38,000 SNPs. We estimate the heritabilities and genetic correlations of the antler traits using a genomic relatedness approach. We then use genome-wide association and haplotype-based regional heritability to identify regions of the genome underlying antler morphology, and an empirical Bayes approach to estimate the underlying distributions of allele effect sizes. We show that antler morphology is highly repeatable over an individual's lifetime, heritable and has a polygenic architecture and that almost all antler traits are positively genetically correlated with some loci identified as having pleiotropic effects. Our findings suggest that a large mutational target and genetic covariances among antler traits, in part maintained by pleiotropy, are likely to contribute to the maintenance of genetic variation in antler morphology in this population.


Asunto(s)
Cuernos de Venado , Ciervos , Animales , Cuernos de Venado/anatomía & histología , Cuernos de Venado/fisiología , Teorema de Bayes , Ciervos/genética , Estudio de Asociación del Genoma Completo , Genómica , Masculino
14.
Mol Ecol ; 31(18): 4607-4621, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34888965

RESUMEN

Vitamin D has a well-established role in skeletal health and is increasingly linked to chronic disease and mortality in humans and companion animals. Despite the clear significance of vitamin D for health and obvious implications for fitness under natural conditions, no longitudinal study has tested whether the circulating concentration of vitamin D is under natural selection in the wild. Here, we show that concentrations of dietary-derived vitamin D2 and endogenously produced vitamin D3  metabolites are heritable and largely polygenic in a wild population of Soay sheep (Ovis aries). Vitamin D2  status was positively associated with female adult survival, and vitamin D3  status predicted female fecundity in particular, good environment years when sheep density and competition for resources was low. Our study provides evidence that vitamin D status has the potential to respond to selection, and also provides new insights into how vitamin D metabolism is associated with fitness in the wild.


Asunto(s)
Ergocalciferoles , Vitamina D , Adulto , Animales , Colecalciferol , Femenino , Humanos , Ovinos
15.
Mol Ecol ; 31(3): 902-915, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34748666

RESUMEN

Pathogen-mediated selection (PMS) is thought to maintain the high level of allelic diversity observed in the major histocompatibility complex (MHC) class II genes. A comprehensive way to demonstrate contemporary selection is to examine associations between MHC variation and individual fitness. As individual fitness is hard to measure, many studies examine associations between MHC variation and phenotypic traits, including direct or indirect measures of adaptive immunity thought to contribute to fitness. Here, we tested associations between MHC class II variation and five phenotypic traits measured in free-living sheep captured in August: weight, strongyle faecal egg count, and plasma IgA, IgE and IgG immunoglobulin titres against the gastrointestinal nematode parasite Teladorsagia circumcincta. We found no association between MHC class II variation and weight or strongyle faecal egg count. We did, however, find associations between MHC class II variation and immunoglobulin levels which varied with isotype, age and sex. Our results suggest associations between MHC and phenotypic traits are more likely to be found for traits more closely associated with pathogen defence than integrative traits such as bodyweight and highlight the association between MHC variation and antibodies in wild populations.


Asunto(s)
Nematodos , Enfermedades de las Ovejas , Alelos , Animales , Heces , Antígenos de Histocompatibilidad Clase II/genética , Ovinos/genética
16.
Mol Ecol ; 31(24): 6541-6555, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34719074

RESUMEN

Genomic prediction, the technique whereby an individual's genetic component of their phenotype is estimated from its genome, has revolutionised animal and plant breeding and medical genetics. However, despite being first introduced nearly two decades ago, it has hardly been adopted by the evolutionary genetics community studying wild organisms. Here, genomic prediction is performed on eight traits in a wild population of Soay sheep. The population has been the focus of a >30 year evolutionary ecology study and there is already considerable understanding of the genetic architecture of the focal Mendelian and quantitative traits. We show that the accuracy of genomic prediction is high for all traits, but especially those with loci of large effect segregating. Five different methods are compared, and the two methods that can accommodate zero-effect and large-effect loci in the same model tend to perform best. If the accuracy of genomic prediction is similar in other wild populations, then there is a real opportunity for pedigree-free molecular quantitative genetics research to be enabled in many more wild populations; currently the literature is dominated by studies that have required decades of field data collection to generate sufficiently deep pedigrees. Finally, some of the potential applications of genomic prediction in wild populations are discussed.


Asunto(s)
Genoma , Polimorfismo de Nucleótido Simple , Ovinos/genética , Animales , Genoma/genética , Genómica/métodos , Linaje , Fenotipo , Genotipo , Modelos Genéticos
17.
Mol Ecol ; 31(23): 6184-6196, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34514660

RESUMEN

Telomere length (TL), typically measured across a sample of blood cells, has emerged as an exciting potential marker of physiological state and of the costs of investment in growth and reproduction within evolutionary ecology. While there is mounting evidence from studies of wild vertebrates that short TL predicts raised subsequent mortality risk, the relationship between reproductive investment and TL is less clear cut, and previous studies report both negative and positive associations. In this study, we examined the relationship between TL and different aspects of maternal reproductive performance in a free-living population of Soay sheep. We find evidence for shorter TL in females that bred, and thus paid any costs of gestation, compared to females that did not breed. However, we found no evidence for any association between TL and litter size. Furthermore, females that invested in gestation and lactation actually had longer TL than females who only invested in gestation because their offspring died shortly after birth. We used multivariate models to decompose these associations into among- and within-individual effects, and discovered that within-individual effects were driving both the negative association between TL and gestation, and the positive association between TL and lactation. This suggests that telomere dynamics may reflect recent physiologically costly investment or variation in physiological condition, depending on the aspect of reproduction being investigated. Our results highlight the physiological complexity of vertebrate reproduction, and the need to better understand how and why different aspects of physiological variation underpinning life histories impact blood cell TL.


Asunto(s)
Longevidad , Reproducción , Animales , Ovinos/genética , Femenino , Reproducción/genética , Acortamiento del Telómero , Leucocitos , Telómero/genética
18.
J Evol Biol ; 35(10): 1352-1362, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36063153

RESUMEN

A cost of reproduction may not be observable in the presence of environmental or individual heterogeneity because they affect the resources available to individuals. Individual space use is critical in determining both the resources available to individuals and the exposure to factors that mediate the value of these resources (e.g. competition and parasitism). Despite this, there has, to our knowledge, been little research to understand how between-individual differences in resource acquisition, caused by variation in space use, interact with environmental variation occurring at the population scale to influence estimates of the cost of reproduction in natural populations. We used long-term data from the St. Kilda Soay sheep population to understand how differences in age, relative home range quality, and average adult body mass, interacted with annual variation in population density and winter North Atlantic Oscillation index to influence over-winter survival and reproduction in the subsequent year, for females that had invested into reproduction to varying degrees. Our results suggest that Soay sheep females experience costs both in terms of future survival and future reproduction. However, we found little evidence that estimated costs of reproduction vary depending on relative home range quality. There are several possible causes for the lack of a relationship between relative home range quality and our estimate of the costs experienced by females. These include the potential for a correlation between relative home range quality and reproductive allocation to mask a relationship between home range quality and reproductive costs, as well as the potential for the benefit of higher quality home ranges being offset by higher densities. Nevertheless, our results raise questions regarding the presence or context-dependence of relationships between resource access and the estimated cost of reproduction.


Asunto(s)
Fenómenos de Retorno al Lugar Habitual , Reproducción , Animales , Femenino , Densidad de Población , Estaciones del Año , Ovinos
19.
PLoS Biol ; 17(11): e3000493, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31689300

RESUMEN

Changing environmental conditions cause changes in the distributions of phenotypic traits in natural populations. However, determining the mechanisms responsible for these changes-and, in particular, the relative contributions of phenotypic plasticity versus evolutionary responses-is difficult. To our knowledge, no study has yet reported evidence that evolutionary change underlies the most widely reported phenotypic response to climate change: the advancement of breeding times. In a wild population of red deer, average parturition date has advanced by nearly 2 weeks in 4 decades. Here, we quantify the contribution of plastic, demographic, and genetic components to this change. In particular, we quantify the role of direct phenotypic plasticity in response to increasing temperatures and the role of changes in the population structure. Importantly, we show that adaptive evolution likely played a role in the shift towards earlier parturition dates. The observed rate of evolution was consistent with a response to selection and was less likely to be due to genetic drift. Our study provides a rare example of observed rates of genetic change being consistent with theoretical predictions, although the consistency would not have been detected with a solely phenotypic analysis. It also provides, to our knowledge, the first evidence of both evolution and phenotypic plasticity contributing to advances in phenology in a changing climate.


Asunto(s)
Ciervos/fisiología , Parto/genética , Parto/metabolismo , Adaptación Fisiológica/genética , Adaptación Fisiológica/fisiología , Animales , Evolución Biológica , Cruzamiento , Cambio Climático , Fenotipo , Reproducción/genética , Reproducción/fisiología , Escocia , Estaciones del Año , Selección Genética/fisiología
20.
Parasitology ; 149(13): 1702-1708, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36052566

RESUMEN

Helminths are common parasites of wild ungulates that can have substantial costs for growth, mortality and reproduction. Whilst these costs are relatively well documented for mature animals, knowledge of helminths' impacts on juveniles is more limited. Identifying these effects is important because young individuals are often heavily infected, and juvenile mortality is a key process regulating wild populations. Here, we investigated associations between helminth infection and overwinter survival in juvenile wild red deer (Cervus elaphus) on the Isle of Rum, Scotland. We collected fecal samples non-invasively from known individuals and used them to count propagules of 3 helminth taxa (strongyle nematodes, Fasciola hepatica and Elaphostrongylus cervi). Using generalized linear models, we investigated associations between parasite counts and overwinter survival for calves and yearlings. Strongyles were associated with reduced survival in both age classes, and F. hepatica was associated with reduced survival in yearlings, whilst E. cervi infection showed no association with survival in either age class. This study provides observational evidence for fitness costs of helminth infection in juveniles of a wild mammal, and suggests that these parasites could play a role in regulating population dynamics.


Asunto(s)
Ciervos , Helmintos , Metastrongyloidea , Parásitos , Animales , Ciervos/parasitología , Animales Salvajes/parasitología , Probabilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA