Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Theor Appl Genet ; 135(4): 1429-1441, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35138422

RESUMEN

KEY MESSAGE: This study identified QTLs associated with the functional stay green trait by a high-density genetic map. Two large effect QTLs, QSg.sau-2B.1 and QSg.sau-6A.2, were identified in multiple years and one of them was successfully validated. The functional stay green phenotype enables wheat to acclimate to stressful environments and prolongs the effectiveness of photosynthesis during the end-of-crop season. Despite the fact that stay green mutants in wheat have been reported, our knowledge of loci for the functional stay green trait remains limited. In this study, an RIL population containing 371 lines genotyped using the Wheat55K SNP array was used to map QTLs controlling the functional stay green trait in multiple years. In total, 21 and 19 QTLs were mapped using the BIP or MET modules of the ICIM method, respectively. Among them, two QTLs, QSg.sau-2B.1 and QSg.sau-6A.2, were considered large effect QTLs for the stay green trait and explained 11.43% and 15.27% of phenotypic variation on average, respectively. Two KASP markers were developed and tightly linked to QSg.sau-2B.1 and QSg.sau-6A.2, respectively, and the genetic effects of different genotypes in the RIL population were successfully confirmed. QSg.sau-2B.1 was also validated by linked KASP marker in different genetic backgrounds. QSg.sau-2B.1 and QSg.sau-6A.2 may influence heredity of the stay green trait and also exhibited a positive effect on the grain filling content. In the interval where QSg.sau-2B.1 and QSg.sau-6A.2 were located on the Chinese Spring and T. turgidum ssp. dicoccoides reference genomes, several genes associated with the leaf senescence process were identified. Altogether, our results identified two QTLs associated with the functional stay green trait and will be useful for the fine mapping and cloning of genes for stay green in the future.


Asunto(s)
Sitios de Carácter Cuantitativo , Triticum , Mapeo Cromosómico , Genotipo , Fenotipo , Triticum/genética
2.
Theor Appl Genet ; 135(12): 4183-4195, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36068440

RESUMEN

KEY MESSAGE: A major and stable QTL cQSGR.sau.3D, which can explain 33.25% of the phenotypic variation in SGR, was mapped and validated, and cQSGR.sau.3D was found to be independent of GI. In this study, a recombinant inbred line (RIL) population containing 304 lines derived from the cross of Chuan-nong17 (CN17) and Chuan-nong11 (CN11) was genotyped using the Wheat55K single-nucleotide polymorphism array. A high-density genetic map consisting of 8329 markers spanning 4131.54 cM and distributed across 21 wheat chromosomes was constructed. QTLs for whole spike germination rate (SGR) were identified in multiple years. Six and fourteen QTLs were identified using the Inclusive Composite Interval Mapping-Biparental Populations and Multi-Environment Trial methods, respectively. A total of 106 digenic epistatic QTLs were also detected in this study. One of the additive QTLs, cQSGR.sau.3D, which was mapped in the region from 3.5 to 4.5 cM from linkage group 3D-2 on chromosome 3D, can explain 33.25% of the phenotypic variation in SGR and be considered a major and stable QTL for SGR. This QTL was independent of the seeds' germination traits, such as germination index. One Kompetitive Allele-Specific PCR (KASP) marker, KASP-AX-110772653, which is tightly linked to cQSGR.sau.3D, was developed. The genetic effect of cQSGR.sau.3D on SGR in the RIL and natural populations was successfully confirmed. Furthermore, within the interval in which cQSGR.sau.3D is located in Chinese Spring reference genomes, thirty-seven genes were found. cQSGR.sau.3D may provide new resources for pre-harvest sprouting resistance breeding of wheat in the future.


Asunto(s)
Sitios de Carácter Cuantitativo , Triticum , Triticum/genética , Mapeo Cromosómico , Genotipo , Fitomejoramiento , Fenotipo , Polimorfismo de Nucleótido Simple
3.
Plant Dis ; 106(8): 2191-2200, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35077221

RESUMEN

Stripe rust (caused by Puccinia striiformis f. sp. tritici) is one of the most severe diseases for wheat production. An important method to improve the stripe rust resistance of wheat is to introduce resistance genes from related species into the wheat genome. The 1RS.1BL wheat-rye translocation from Petkus rye has contributed substantially to wheat resistance breeding worldwide. However, given the breakdown of the stripe rust resistance gene Yr9 in 1RS, its importance for wheat improvement has decreased. In this study, we developed 166 new primary 1RS.1BL translocation lines by crossing rye varieties Weining, Baili, and Aigan with several wheat cultivars. Cytogenetic and molecular analyses indicated that all of these lines contained a pair of intact 1RS.1BL translocation chromosomes. The stripe rust resistance of these translocation lines and their wheat parents was evaluated in southwestern China during the severe stripe rust epidemics in 2015 and 2021. The results showed diverse effects of the 1RS.1BL translocations from different rye cultivars on resistance to stripe rust. The highest genetic diversity was observed in 1RS.1BL translocations derived from diverse rye varieties but in the same wheat background. The development of diverse 1RS.1BL translocation lines offers ample opportunities to introduce new variations into wheat for improving stripe rust resistance. Finally, 71 new translocation lines, including nine developed from the cross of MY11 × Aigan, four from MY11 × Baili, 40 from MY11 × Weining, 14 from A42912 × Baili, and four from A42912 × Weining. These lines showed consistent resistance to stripe rust in fields under frequent changes of the pathogen races and could be useful genetic stocks for breeding wheat cultivars with resistance to stripe rust.


Asunto(s)
Basidiomycota , Triticum , Basidiomycota/genética , Cromosomas de las Plantas/genética , Hibridación Fluorescente in Situ , Fitomejoramiento , Secale/genética , Translocación Genética , Triticum/genética
4.
Int J Mol Sci ; 23(7)2022 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-35409350

RESUMEN

Both in Taiwan and around the world, lung cancer is a primary cause of cancer-related deaths. In Taiwan, the most prevalent form of lung cancer is lung adenocarcinoma, a type of non-small-cell lung carcinoma. Although numerous lung cancer therapies are available, their clinical outcomes are unsatisfactory. Natural products, including fungal metabolites, are excellent sources of pharmaceutical compounds used in cancer treatment. We employed in vitro cell invasion, cell proliferation, cell migration, cell viability, and colony formation assays with the aim of evaluating the effects of coriloxin, isolated from fermented broths of Nectria balsamea YMJ94052402, on human lung adenocarcinoma CL1-5 and/or A549 cells. The potential targets regulated by coriloxin were examined through Western blot analysis. The cytotoxic effect of coriloxin was more efficiently exerted on lung adenocarcinoma cells than on bronchial epithelial cells. Moreover, low-concentration coriloxin significantly suppressed adenocarcinoma cells' proliferative, migratory, and clonogenic abilities. These inhibitory effects were achieved through ERK/AKT inactivation, epithelial-mesenchymal transition regulation, and HLJ1 expression. Our findings suggest that coriloxin can be used as a multitarget anticancer agent. Further investigations of the application of coriloxin as an adjuvant therapy in lung cancer treatment are warranted.


Asunto(s)
Adenocarcinoma del Pulmón , Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Células A549 , Adenocarcinoma del Pulmón/patología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/metabolismo
5.
Front Plant Sci ; 12: 713890, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34484276

RESUMEN

As an important component, 1,000 kernel weight (TKW) plays a significant role in the formation of yield traits of wheat. Kernel size is significantly positively correlated to TKW. Although numerous loci for kernel size in wheat have been reported, our knowledge on loci for kernel area (KA) and kernel circumference (KC) remains limited. In the present study, a recombinant inbred lines (RIL) population containing 371 lines genotyped using the Wheat55K SNP array was used to map quantitative trait loci (QTLs) controlling the KA and KC in multiple environments. A total of 54 and 44 QTLs were mapped by using the biparental population or multienvironment trial module of the inclusive composite interval mapping method, respectively. Twenty-two QTLs were considered major QTLs. BLAST analysis showed that major and stable QTLs QKc.sau-6A.1 (23.12-31.64 cM on 6A) for KC and QKa.sau-6A.2 (66.00-66.57 cM on 6A) for KA were likely novel QTLs, which explained 22.25 and 20.34% of the phenotypic variation on average in the 3 year experiments, respectively. Two Kompetitive allele-specific PCR (KASP) markers, KASP-AX-109894590 and KASP-AX-109380327, were developed and tightly linked to QKc.sau-6A.1 and QKa.sau-6A.2, respectively, and the genetic effects of the different genotypes in the RIL population were successfully confirmed. Furthermore, in the interval where QKa.sau-6A.2 was located on Chinese Spring and T. Turgidum ssp. dicoccoides reference genomes, only 11 genes were found. In addition, digenic epistatic QTLs also showed a significant influence on KC and KA. Altogether, the results revealed the genetic basis of KA and KC and will be useful for the marker-assisted selection of lines with different kernel sizes, laying the foundation for the fine mapping and cloning of the gene(s) underlying the stable QTLs detected in this study.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA