Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO Rep ; 24(12): e49561, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37943703

RESUMEN

Multidrug-resistant bacteria present a major threat to public health that urgently requires new drugs or treatment approaches. Here, we conduct integrated proteomic and metabolomics analyses to screen for molecular candidates improving survival of mice infected with Vibrio parahaemolyticus, which indicate that L-Alanine metabolism and phagocytosis are strongly correlated with mouse survival. We also assess the role of L-Alanine in improving mouse survival by in vivo bacterial challenge experiments using various bacteria species, including V. parahaemolyticus, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Functional studies demonstrate that exogenous L-Alanine promotes phagocytosis of these multidrug-resistant pathogen species. We reveal that the underlying mechanism involves two events boosted by L-Alanine: TLR4 expression and L-Alanine-enhanced TLR4 signaling via increased biosynthesis and secretion of fatty acids, including palmitate. Palmitate enhances binding of lipopolysaccharide to TLR4, thereby promoting TLR4 dimer formation and endocytosis for subsequent activation of the PI3K/Akt and NF-κB pathways and bacteria phagocytosis. Our data suggest that modulation of the metabolic environment is a plausible approach for combating multidrug-resistant bacteria infection.


Asunto(s)
Alanina , Fosfatidilinositol 3-Quinasas , Animales , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor Toll-Like 4/genética , Proteómica , Fagocitosis , Bacterias/metabolismo , Palmitatos
2.
PLoS Pathog ; 18(8): e1010796, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36026499

RESUMEN

Macrophages restrict bacterial infection partly by stimulating phagocytosis and partly by stimulating release of cytokines and complement components. Here, we treat macrophages with LPS and a bacterial pathogen, and demonstrate that expression of cytokine IL-1ß and bacterial phagocytosis increase to a transient peak 8 to 12 h post-treatment, while expression of complement component 3 (C3) continues to rise for 24 h post-treatment. Metabolomic analysis suggests a correlation between the cellular concentrations of succinate and IL-1ß and of inosine and C3. This may involve a regulatory feedback mechanism, whereby succinate stimulates and inosine inhibits HIF-1α through their competitive interactions with prolyl hydroxylase. Furthermore, increased level of inosine in LPS-stimulated macrophages is linked to accumulation of adenosine monophosphate and that exogenous inosine improves the survival of bacterial pathogen-infected mice and tilapia. The implications of these data suggests potential therapeutic tools to prevent, manage or treat bacterial infections.


Asunto(s)
Infecciones Bacterianas , Lipopolisacáridos , Animales , Citocinas , Inosina/farmacología , Lipopolisacáridos/farmacología , Ratones , Fagocitosis , Ácido Succínico
3.
Fish Shellfish Immunol ; 131: 172-180, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36210004

RESUMEN

Polyinosinic-polycytidylic acid (poly I:C) is a synthetic analog of double-stranded RNA (dsRNA) that activates anti-infective innate immunity. The underlying mechanisms are identified as targeting pattern recognition receptors and Th1-inducing. However, whether poly I:C manipulates metabolism to implement this anti-infective function is unknown. Here, GC-MS based metabolomics was used to characterize metabolic profiles induced by different doses of poly I:C. Analysis on the dose-dependent metabolomes shows that elevation of the TCA cycle and malate with the increasing dose of ploy I:C forms the most characteristic feature of the poly I:C stimulation. Exogenous malate activates the TCA cycle and elevates survival of zebrafish infected with Vibrio alginolyticus, which is related to the elevated expression of il-1b, il-6, il-8, tnf-a, and c3b. These results reveal a previously unknown regulation of poly I:C that boosts the TCA cycle to enhance innate immunity against bacterial infection.


Asunto(s)
Infecciones Bacterianas , Poli I-C , Animales , Poli I-C/farmacología , Malatos , Pez Cebra/genética , Inmunidad Innata , ARN Bicatenario
4.
Proc Natl Acad Sci U S A ; 115(7): E1578-E1587, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29382755

RESUMEN

The emergence and ongoing spread of multidrug-resistant bacteria puts humans and other species at risk for potentially lethal infections. Thus, novel antibiotics or alternative approaches are needed to target drug-resistant bacteria, and metabolic modulation has been documented to improve antibiotic efficacy, but the relevant metabolic mechanisms require more studies. Here, we show that glutamate potentiates aminoglycoside antibiotics, resulting in improved elimination of antibiotic-resistant pathogens. When exploring the metabolic flux of glutamate, it was found that the enzymes that link the phosphoenolpyruvate (PEP)-pyruvate-AcCoA pathway to the TCA cycle were key players in this increased efficacy. Together, the PEP-pyruvate-AcCoA pathway and TCA cycle can be considered the pyruvate cycle (P cycle). Our results show that inhibition or gene depletion of the enzymes in the P cycle shut down the TCA cycle even in the presence of excess carbon sources, and that the P cycle operates routinely as a general mechanism for energy production and regulation in Escherichia coli and Edwardsiella tarda These findings address metabolic mechanisms of metabolite-induced potentiation and fundamental questions about bacterial biochemistry and energy metabolism.


Asunto(s)
Aminoglicósidos/farmacología , Antibacterianos/farmacología , Edwardsiella tarda/efectos de los fármacos , Edwardsiella tarda/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Ácido Pirúvico/metabolismo , Ciclo del Ácido Cítrico/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Fosfoenolpiruvato/metabolismo
5.
Environ Microbiol ; 22(10): 4295-4313, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32291842

RESUMEN

Colistin is a last-line antibiotic against Gram-negative multidrug-resistant bacteria, but the increased resistance poses a huge challenge to this drug. However, the mechanisms underlying such resistance are largely unexplored. The present study first identified the mutations of two genes encoding AceF subunit of pyruvate dehydrogenase (PDH) and TetR family transcriptional regulator in colistin-resistant Vibrio alginolyticus (VA-RCT ) through genome sequencing. Then, gas chromatography-mass spectroscopy-based metabolomics was adopted to investigate metabolic responses since PDH plays a role in central carbon metabolism. Colistin resistance was associated with the reduction of the central carbon metabolism and energy metabolism, featuring the alteration of the pyruvate cycle, a recently characterized energy-producing cycle. Metabolites in the pyruvate cycle reprogramed colistin-resistant metabolome to colistin-sensitive metabolome, resulting in increased gene expression, enzyme activity or protein abundance of the cycle and sodium-translocating nicotinamide adenine dinucleotide-ubiquinone oxidoreductase. This reprogramming promoted the production of the proton motive force that enhances the binding between colistin and lipid A in lipopolysaccharide. Moreover, this metabolic approach was effective against VA-RCT in vitro and in vivo as well as other clinical isolates. These findings reveal a previously unknown mechanism of colistin resistance and develop a metabolome-reprogramming approach to promote colistin efficiency to combat with colistin-resistant bacteria.


Asunto(s)
Proteínas Bacterianas/metabolismo , Colistina/metabolismo , Farmacorresistencia Bacteriana Múltiple/fisiología , Complejo Piruvato Deshidrogenasa/metabolismo , Quinona Reductasas/metabolismo , Vibrio alginolyticus/efectos de los fármacos , Antibacterianos/metabolismo , Antibacterianos/farmacología , Colistina/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Metabolismo Energético/genética , Cromatografía de Gases y Espectrometría de Masas , Humanos , Lípido A/metabolismo , Potenciales de la Membrana/fisiología , Metaboloma/genética , Metabolómica/métodos , Complejo Piruvato Deshidrogenasa/genética , Transactivadores/genética , Vibrio alginolyticus/genética , Vibrio alginolyticus/aislamiento & purificación
6.
Environ Microbiol ; 22(10): 4367-4380, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32441046

RESUMEN

Antibiotic-resistant Vibrio alginolyticus poses a big challenge to human health and food safety. It is urgently needed to understand the mechanisms underlying antibiotic resistance to develop effective approaches for the control. Here we explored the metabolic difference between gentamicin-resistant V. alginolyticus (VA-RGEN ) and gentamicin-sensitive V. alginolyticus (VA-S), and found that the reactive oxygen species (ROS) generation was altered. Compared with VA-S, the ROS content in VA-RGEN was reduced due to the decreased generation and increased breakdown of ROS. The decreased production of ROS was attributed to the decreased central carbon metabolism, which is associated with the resistance to gentamicin. As such a mechanism, we exogenously administrated VA-RGEN with the glucose that activated the central carbon metabolism and promoted the generation of ROS, but decreased the breakdown of ROS in VA-RGEN . The gentamicin-mediated killing was increased with the elevation of the ROS level by a synergistic effect between gentamicin and exogenous glucose. The synergistic effect was inhibited by thiourea, a scavenger of ROS. These results reveal a reduced ROS-mediated antibiotic resistance mechanism and its reversal by exogenous glucose.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Gentamicinas/farmacología , Glucosa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Vibrio alginolyticus/metabolismo , Animales , Humanos , Tiourea/farmacología , Vibrio alginolyticus/efectos de los fármacos
7.
Fish Shellfish Immunol ; 97: 41-45, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31830569

RESUMEN

One of the most important emerging pathogens in the aquaculture industry is Edwardsiella tarda, and it causes extensive losses in farmed fish globally. The identification of protective immunogens against E. tarda is increasingly valued. We previously investigated 20 recombinant proteins of 38 E. tarda extracellular secretory proteins and identified 10 as protective immunogens in a zebrafish model. Here, we clone 10 of the remaining 18 genes, and the resulting recombinant proteins are used for evaluation of immune protection. ETAE_2147 (FliK), ETAE_0654 (PpdD), and ETAE_3259 (DamX) are identified as protective immunogens. Furthermore, their protection mechanism is explored by the detection of innate immunity genes encoding IL-1b, IL-6, IL-8, C3b, and NF-κB. The three protective immunogens stimulate zebrafish to produce higher and more lasting expression of the five immunity genes than non-protective immunogens during the first 48 h of infection. In addition, these protective immunogens are prone to be regulated by host products, which is helpful for cross-talk between host and pathogen, and thus they become vaccine candidates. These results highlight the way to understand the working mechanisms of protective immunogens.


Asunto(s)
Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Edwardsiella tarda/inmunología , Inmunidad Innata , Animales , Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/administración & dosificación , Proteínas Bacterianas/administración & dosificación , Vacunas Bacterianas/administración & dosificación , Vacunas Bacterianas/inmunología , Infecciones por Enterobacteriaceae , Enfermedades de los Peces/inmunología , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/inmunología , Pez Cebra/inmunología
8.
Environ Microbiol ; 21(12): 4724-4739, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31595636

RESUMEN

Strategy of managing antibiotic-resistant Vibrio alginolyticus, a bacterial pathogen that threatens human health and animal farming, is not available due to the lack of knowledge about the underlying mechanism of antibiotic resistance. Here, we showed that gentamicin-resistant V. alginolyticus (VA-RGEN ) has four mutations on metabolism and one mutation on a two-component system by whole-genome and PCR-based sequencing, indicating the metabolic shift in VA-RGEN. Thus, metabolic profile was investigated by GC-MS based metabolomics. Glucose was identified as a crucial biomarker, whose abundance was decreased in VA-RGEN . Further analysis with iPath, and gene expression and enzyme activity of the pyruvate cycle (the P cycle) demonstrated a global depressed metabolic pathway network in VA-RGEN . Consistently, NADH, sodium-pumping NADH:ubiquinone oxidoreductase (Na(+)-NQR) system, membrane potential and intracellular gentamicin were decreased in VA-RGEN . These findings indicate that the reduced redox state contributes to antibiotic resistance. Interestingly, exogenous glucose potentiated gentamicin to efficiently kill VA-RGEN through the promotion of the P cycle, NADH, membrane potential and intracellular gentamicin. The potentiation was further confirmed in a zebrafish model. These results indicate that the gentamicin resistance reduces the P cycle and Na(+)-NQR system and thereby decreases redox state, membrane potential and gentamicin uptake, which can be reversed by exogenous glucose.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Gentamicinas/farmacología , Glucosa/metabolismo , Vibrio alginolyticus/metabolismo , Animales , Antibacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Gentamicinas/metabolismo , Oxidación-Reducción , Vibrio/metabolismo , Vibrio alginolyticus/efectos de los fármacos , Vibrio alginolyticus/genética
9.
Fish Shellfish Immunol ; 92: 508-518, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31247319

RESUMEN

Mechanisms by which vaccines enhance immunity to combat bacterial pathogens are not fully understood. Recently, we have found that live Edwardsiella tarda vaccine enhances ability against the bacterial challenge by metabolic modulation in zebrafish. Here we first explored the metabolic modulation promoted by inactivated E. tarda to eliminate the pathogen. Inactivated E. tarda vaccine modulated a similar metabolome to combat with the pathogen in zebrafish as live E. tarda vaccine did. Specifically, both vaccines promoted biosynthesis of unsaturated fatty acids and the TCA cycle. However, due to relatively higher activated TCA cycle in inactivated vaccine than live vaccine, live vaccine promoted higher abundance of palmitate than inactivated vaccine. Consistently, the protection against E. tarda challenge was palmitate dose-dependent. Live vaccine activated higher expression of IL-1ß, IL-8,Cox-2 genes and lower expression of IL-15, IL-21 genes than inactivated vaccine, which is similar to the results stimulated by high and low doses of palmitate, respectively. These findings indicate live and inactivated E. tarda vaccines stimulate differential abundances of palmitate that contribute to differential innate immunities against bacterial infection. Thus, metabolic environment contributes to immune response.


Asunto(s)
Ácido Palmítico/metabolismo , Animales , Vacunas Bacterianas , Edwardsiella tarda/fisiología , Infecciones por Enterobacteriaceae/inmunología , Enfermedades de los Peces/inmunología , Distribución Aleatoria , Vacunas Atenuadas , Vacunas de Productos Inactivados , Pez Cebra
10.
J Proteome Res ; 17(9): 2987-2994, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-30095909

RESUMEN

It is widely accepted that live vaccines elicit higher immune protection than inactivated vaccines. However, the mechanisms are largely unknown. Here, an array with 64 recombinant outer membrane proteins of Vibrio parahemolyticus was developed to explore antibody responses of live and inactivated V. parahemolyticus post immunization of the 8th, 12th, 16th and 20th day. Among the 64 outer membrane proteins, 28 elicited antibody generation. They were all detected in live vaccine-induced immunity but only 15 antibodies were found in inactivated vaccine-induced immunity. Passive immunization showed that higher percent survival was detected in live than inactivated vaccine-induced immunities. Active immunization indicated that out of 19 randomly selected outer membrane proteins, 5 stimulated immune protection against V. parahemolyticus infection. Among them, antibodies to VP2309 and VPA0526 were shared in mice immunized by live or inactivated vaccines, whereas antibodies to VPA0548, VPA1745, and VP1667 were only found in mice immunized by live vaccine. In addition, live V. parahemolyticus stimulated earlier antibody response than inactivated bacteria. These results indicate that not all of the outer membrane proteins elicited antibody responses when they work together in the form of live or inactivated bacteria; live vaccine elicits more protective antibodies, which contribute to higher immune protection in live vaccine than inactivated vaccine. Notably, the recombinant proteins might be different from those separated from live bacteria, and they might be different in their immunogenic potencies.


Asunto(s)
Anticuerpos Antibacterianos/biosíntesis , Proteínas de la Membrana Bacteriana Externa/inmunología , Vacunas Bacterianas/inmunología , Inmunidad Humoral/efectos de los fármacos , Vibriosis/prevención & control , Animales , Proteínas de la Membrana Bacteriana Externa/administración & dosificación , Proteínas de la Membrana Bacteriana Externa/genética , Vacunas Bacterianas/administración & dosificación , Vacunas Bacterianas/genética , Calor , Sueros Inmunes/administración & dosificación , Inmunización Pasiva/métodos , Inmunogenicidad Vacunal , Ratones , Análisis por Matrices de Proteínas , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Análisis de Supervivencia , Vacunas de Productos Inactivados , Vibriosis/inmunología , Vibriosis/microbiología , Vibriosis/mortalidad , Vibrio parahaemolyticus/efectos de los fármacos , Vibrio parahaemolyticus/crecimiento & desarrollo , Vibrio parahaemolyticus/inmunología , Pez Cebra
11.
Environ Microbiol ; 20(11): 4022-4036, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30307102

RESUMEN

The development of antibiotic resistance in Vibrio alginolyticus represents a threat to human health and fish farming. Environmental NaCl regulation of bacterial physiology is well documented, but whether the regulation contributes to antibiotic resistance remains unknown. To explore this, we compared minimum inhibitory concentration (MIC) of V. alginolyticus cultured in different media with 0.5%-10% NaCl, and found that the MIC increased as the NaCl concentration increased, especially for aminoglycoside antibiotics. Consistent with this finding, internal NaCl also increased, while intracellular gentamicin level decreased. GC-MS-based metabolomics showed different distributions of pyruvate cycle intermediates among 0.5%, 4% and 10% NaCl. Differential activity of enzymes in the pyruvate cycle and altered expression of Na(+)-NQR led to a reducing redox state, characterized by decreased levels of NADH, proton motive force (PMF) and ATP. Meanwhile, NaCl negatively regulated PMF as a consequence of the reducing redox state. These together are responsible for the decreased intracellular gentamicin level with the increased external level of NaCl. Our study reveals a previously unknown redox state-dependent mechanism regulated by NaCl in V. alginolyticus that impacts antibiotic resistance.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Cloruro de Sodio/farmacología , Vibrio alginolyticus/efectos de los fármacos , Medios de Cultivo , Pruebas de Sensibilidad Microbiana , Oxidación-Reducción
12.
Fish Shellfish Immunol ; 75: 308-315, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29438846

RESUMEN

Polyvalent vaccines against more than one species of pathogens are especially important due to the complex ecosystem in aquaculture. We have previously shown that the development of polyvalent vaccines by shuffling six ompA genes from different bacteria with V. parahaemolyticus VP0764 primers. Here, we used the same 6 genes, V. alginolyticus VA0764 and VA1186, V. parahaemolyticus VP0764 and VP1186, E. tarda ompA and E. coli ompA, but with E. tarda ompA primers to develop new polyvalent vaccines. By this approach, we identified 7 potential polyvalent vaccines that were effective against both V. alginolyticus and E. tarda infections. Furthermore, the innate immunity triggered by the vaccines were also explored in three groups, no protection (group I), protection against V. alginolyticus (group II), and protection against both V. alginolyticus and E. tarda (group III). The transcription of IL-1ß, IL-6, IL-8, C3b and NF-kB were significantly increased in group II and group III but not group I, where the expression level of group III was higher than group II. In addition, differential activities of succinate dehydrogenase were detected among the three groups. These results indicate the expansion of polyvalent vaccine reservoir with the same shuffling genes but different primers, and promote the understanding of the mechanisms of polyvalent vaccines based on vaccine-induced innate immunity.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/inmunología , Vacunas Bacterianas/inmunología , Enfermedades de los Peces/inmunología , Pez Cebra/inmunología , Animales , Proteínas de la Membrana Bacteriana Externa/administración & dosificación , Vacunas Bacterianas/administración & dosificación , Edwardsiella tarda/fisiología , Infecciones por Enterobacteriaceae/inmunología , Distribución Aleatoria , Vibriosis/inmunología , Vibrio alginolyticus/fisiología
13.
Fish Shellfish Immunol ; 74: 325-331, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29289655

RESUMEN

Our previous studies demonstrated that molecular breeding via DNA shuffling directs the evolution of polyvalent vaccines with desired traits, which leads to generation of polyvalent ompA vaccines using Vibrio alginolyticus VA0764 primers. Here, we replaced VA0764 primers with Edwardsiella tarda ompA primers to generate new polyvalent ompA vaccines by DNA shuffling of the same five ompA genes from four species of bacteria E. tarda, V. parahaemolyticus, V. alginolyticus and Escherichia coli. We identified four polyvalent vaccine candidates from a eukaryotic expressing library EompAs-FE containing 82 ompAs using active immune protection against V. alginolyticus and E. tarda. Furthermore, we explored mechanisms of polyvalent vaccine candidates by investigation of the innate immune response to these ompAs, and found that expression of IL-1ß, IL-8, IL-15, COX-2, IFN-γ, TLR-1, TLR-3 and C3b genes was elevated as a characteristic feature of these polyvalent vaccine candidates. These results indicate that use of different primers to construct a DNA library selects new evolution of polyvalent vaccines with desired traits, and polyvalent ompA vaccines elicit high innate immune response.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/inmunología , Vacunas Bacterianas/inmunología , Edwardsiella tarda/inmunología , Enfermedades de los Peces/inmunología , Vibrio alginolyticus/inmunología , Pez Cebra , Animales , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Barajamiento de ADN/veterinaria , Edwardsiella tarda/genética , Infecciones por Enterobacteriaceae/inmunología , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/veterinaria , Escherichia coli/genética , Escherichia coli/inmunología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/inmunología , Enfermedades de los Peces/microbiología , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Vibriosis/inmunología , Vibriosis/microbiología , Vibriosis/veterinaria , Vibrio alginolyticus/genética , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/inmunología
14.
Fish Shellfish Immunol ; 72: 104-110, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29107742

RESUMEN

Vaccines are the most economic, efficient and environment-friendly agents in protecting host against bacterial infection. In aquaculture, polyvalent vaccines targeting more than one bacterial specie are highly demanded due to the presence of various types of bacterial pathogens in farming environment. Here eighteen genes encoding outer membrane proteins of Vibrio parahaemolyticus were cloned and expressed. The expressed recombinant proteins were used for antiserum preparation. Passive and active immune protection of the antiserum and recombinant proteins was investigated in the zebrafish model. Two recombinant proteins, VP1667 and VP2369, showed effective immune protection against at least two genera of bacteria, Vibrio (V. parahaemolyticus and V. alginolyticus), Pseudomonas (P. fluorescens) or/and Aeromonas (A. hydrophila), and thereby are potential polyvalent vaccine candidates to defend against bacterial infection in fish farming. Furthermore, the mechanisms for the two polyvalent vaccines in triggering immune response were explored. Antiserum to VP1667 or VP2369 was not cross-reacted with P. fluorescens and A. hydrophila, whereas both recombinant proteins induced significant innate immune response. Comparatively, VP1667 stimulates stronger lymphokine and monokine, and VP2369 induces stronger humoral immune response, while both produce similar NF-κB, COX-2, TLR-1 and TLR-3 expression. Our results identify two polyvalent vaccines and demonstrate characteristics features of their cross-protection at the content of the innate immune response.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/inmunología , Vacunas Bacterianas/inmunología , Inmunidad Innata , Inmunización Pasiva/veterinaria , Vacunación/veterinaria , Vibrio parahaemolyticus/inmunología , Pez Cebra/inmunología , Animales , Antígenos Bacterianos/inmunología , Clonación Molecular , Proteínas Recombinantes/inmunología
15.
J Proteome Res ; 16(5): 1880-1889, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28266220

RESUMEN

Crucial metabolites that modulate hosts' metabolome to eliminate bacterial pathogens have been documented, but the metabolic mechanisms are largely unknown. The present study explores the metabolic mechanism for l-leucine-induced metabolome to eliminate Streptococcus iniae in tilapia. GC-MS-based metabolomics was used to investigate the tilapia liver metabolic profile in the presence of exogenous l-leucine. Thirty-seven metabolites of differential abundance were determined, and 11 metabolic pathways were enriched. Pattern recognition analysis identified serine and proline as crucial metabolites, which are the two metabolites identified in survived tilapias during S. iniae infection, suggesting that the two metabolites play crucial roles in l-leucine-induced elimination of the pathogen by the host. Exogenous l-serine reduces the mortality of tilapias infected by S. iniae, providing a robust proof supporting the conclusion. Furthermore, exogenous l-serine elevates expression of genes IL-1ß and IL-8 in tilapia spleen, but not TNFα, CXCR4 and Mx, suggesting that the metabolite promotes a phagocytosis role of macrophages, which is consistent with the finding that l-leucine promotes macrophages to kill both Gram-positive and Gram-negative bacterial pathogens. Therefore, the ability of phagocytosis enhanced by exogenous l-leucine is partly attributed to elevation of l-serine. These results demonstrate a metabolic mechanism by which exogenous l-leucine modulates tilapias' metabolome to enhance innate immunity and eliminate pathogens.


Asunto(s)
Leucina/farmacología , Metaboloma/efectos de los fármacos , Fagocitosis , Streptococcus/inmunología , Tilapia/metabolismo , Animales , Enfermedades de los Peces/microbiología , Cromatografía de Gases y Espectrometría de Masas , Inmunidad Innata , Hígado/metabolismo , Macrófagos/inmunología , Metabolómica/métodos , Fagocitosis/efectos de los fármacos , Bazo/metabolismo , Infecciones Estreptocócicas , Tilapia/inmunología
16.
Fish Shellfish Immunol ; 61: 34-43, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27965164

RESUMEN

We have recently reported that the survival of tilapia, Oreochromis niloticus, during Edwardsiella tarda infection is tightly associated with their metabolome, where the survived O. niloticus has distinct metabolomic profile to dying O. niloticus. Glucose is the key metabolite to distinguish the survival- and dying-metabolome. More importantly, exogenous administration of glucose to the fish greatly enhances their survival for the infection, indicating the functional roles of glucose in metabolome repurposing, known as reprogramming metabolomics. However, the underlying information for the reprogramming is not yet available. Here, GC/MS based metabolomics is used to understand the mechanisms by which how exogenous glucose elevates O. niloticus, anti-infectious ability to E. tarda. Results showed that exogenous glucose promotes stearic acid and palmitic acid biosynthesis but attenuates TCA cycle to potentiate O. niloticus against bacterial infection, which is confirmed by the fact that exogenous stearic acid increases immune protection in O. niloticus against E. tarda infection in a manner of Mx protein. These results indicate that exogenous glucose reprograms O. niloticus anti-infective metabolome that characterizes elevation of stearic acid and palmitic acid and attenuation of the TCA cycle. Therefore, our results proposed a novel mechanism that glucose promotes unsaturated fatty acid biosynthesis to cope with infection, thereby highlighting a potential way of enhancing fish immunity in aquaculture.


Asunto(s)
Cíclidos , Edwardsiella tarda/fisiología , Infecciones por Enterobacteriaceae/veterinaria , Enfermedades de los Peces/metabolismo , Glucosa/metabolismo , Metaboloma , Animales , Biomarcadores/análisis , Infecciones por Enterobacteriaceae/metabolismo , Infecciones por Enterobacteriaceae/microbiología , Enfermedades de los Peces/microbiología , Cromatografía de Gases y Espectrometría de Masas/veterinaria , Metabolómica , Análisis Multivariante , Distribución Aleatoria
18.
J Proteome Res ; 15(7): 2246-53, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27251450

RESUMEN

Streptococcus agalactiae causes severe systemic infections in human and fish. In the present study, we established a pathogen-plasma interaction model by which we explored how S. agalactiae evaded serum-mediated killing. We found that S. agalactiae grew faster in the presence of yellow grouper plasma than in the absence of the plasma, indicating S. agalactiae evolved a way of evading the fish immune system. To determine the events underlying this phenotype, we applied GC-MS-based metabolomics approaches to identify differential metabolomes between S. agalactiae cultured with and without yellow grouper plasma. Through bioinformatics analysis, decreased malic acid and increased adenosine were identified as the most crucial metabolites that distinguish the two groups. Meanwhile, they presented with decreased TCA cycle and elevated purine metabolism, respectively. Finally, exogenous malic acid and adenosine were used to reprogram the plasma-resistant metabolome, leading to elevated and decreased susceptibility to the plasma, respectively. Therefore, our findings reveal for the first time that S. agalactiae utilizes a metabolic trick to respond to plasma killing as a result of serum resistance, which may be reverted or enhanced by exogenous malic acid and adenosine, respectively, suggesting that the metabolic trick can be regulated by metabolites.


Asunto(s)
Peces/inmunología , Interacciones Huésped-Patógeno/inmunología , Metabolómica/métodos , Suero/inmunología , Streptococcus agalactiae/inmunología , Adenosina/metabolismo , Animales , Ciclo del Ácido Cítrico , Biología Computacional , Peces/microbiología , Cromatografía de Gases y Espectrometría de Masas , Humanos , Malatos/metabolismo , Metaboloma , Purinas/metabolismo
19.
Fish Shellfish Immunol ; 58: 508-513, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27697557

RESUMEN

Molecular breeding via DNA shuffling directs the evolution of vaccines with desired traits. In the present study, polyvalent OmpA vaccines were generated by DNA shuffling of five ompA genes from four species of bacteria Vibrio parahaemolyticus, V. alginolyticus, Edwardsiella tarda and Escherichia coli. First, a new hybrid OmpA was constructed using VA0764 primers and used for construction of a prokaryotic expressing library PompAs-FV containing 84 ompAs, which were validated by PCR and SDS/PAGE. Then, the 84 ompAs were used to construct a eukaryotic expressing library EompAs-FV for preparing DNA vaccines. Third, extracellular bacterium V. alginolyticus challenge post active immunization using these DNA vaccines was carried out to identify genes with high immunoprotection. Among the 84 ompAs, 17 showed higher or equal immune protection against infection caused by V. alginolyticus than control VA0764. Finally, immune protection against infection caused by intracellular bacterium Edwardsiella tarda was assessed further using the top seven out of the 17 ompAs. This led to identification of three efficient polyvalent vaccines against infections caused by the extracellular bacterium V. alginolyticus and intracellular bacterium E. tarda. In addition, we sequenced genes for understanding mechanisms of the polyvalent vaccines, but association of immune protection with mutation of gene and amino acids is not determined. These results indicate that DNA shuffling is an efficient way to develop polyvalent vaccines against microbial infections.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/genética , Vacunas Bacterianas/inmunología , Edwardsiella tarda/inmunología , Escherichia coli/inmunología , Enfermedades de los Peces/prevención & control , Vibrio/inmunología , Pez Cebra , Animales , Proteínas de la Membrana Bacteriana Externa/metabolismo , Barajamiento de ADN/veterinaria , Infecciones por Enterobacteriaceae/inmunología , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/prevención & control , Infecciones por Enterobacteriaceae/veterinaria , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/prevención & control , Infecciones por Escherichia coli/veterinaria , Vacunas contra Escherichia coli/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Vibriosis/inmunología , Vibriosis/microbiología , Vibriosis/prevención & control , Vibriosis/veterinaria , Vibrio alginolyticus/inmunología , Vibrio parahaemolyticus/inmunología
20.
Fish Shellfish Immunol ; 49: 230-6, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26707781

RESUMEN

A wide variety of bacterial infections is a major challenge in aquaculture. Development of polyvalent vaccines that can fight against as many pathogens as possible is especially necessary. The present study uses DNA shuffling to create a new hybrid OmpA with improved cross-protection against Vibrio alginolyticus and Edwardsiella tarda through the recombination of six OmpA genes from Vibrio parahaemolyticus, V. alginolyticus, E. tarda and Escherichia coli. Out of the 43 recombinant chimeras genes constructed using VA0764 primers, EompAs-19 was demonstrated as an ideal polyvalent vaccine against infections caused V. alginolyticus and E. tarda. Compared with VA0764, OmpAs-19 had three mutations, which may be a molecular basis of EompAs-19 as an efficient polyvalent vaccine against both V. alginolyticus and E. tarda infections. These results develop a polyvalent vaccine that prevents the infections caused by extracellular and intracellular bacteria. Thus, the present study highlights the way to develop polyvalent vaccines against microbial infections by DNA shuffling.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/inmunología , Vacunas Bacterianas/inmunología , Edwardsiella tarda/inmunología , Enfermedades de los Peces/inmunología , Vibrio alginolyticus/inmunología , Pez Cebra , Animales , Proteínas de la Membrana Bacteriana Externa/genética , Barajamiento de ADN/veterinaria , Edwardsiella tarda/genética , Infecciones por Enterobacteriaceae/inmunología , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/veterinaria , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/inmunología , Enfermedades de los Peces/microbiología , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Vibriosis/inmunología , Vibriosis/microbiología , Vibriosis/veterinaria , Vibrio parahaemolyticus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA