Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(14): 7780-7790, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36995167

RESUMEN

Dimeric accretion products have been observed both in atmospheric aerosol particles and in the gas phase. With their low volatilities, they are key contributors to the formation of new aerosol particles, acting as seeds for more volatile organic vapors to partition onto. Many particle-phase accretion products have been identified as esters. Various gas- and particle-phase formation pathways have been suggested for them, yet evidence remains inconclusive. In contrast, peroxide accretion products have been shown to form via gas-phase peroxy radical (RO2) cross reactions. Here, we show that these reactions can also be a major source of esters and other types of accretion products. We studied α-pinene ozonolysis using state-of-the-art chemical ionization mass spectrometry together with different isotopic labeling approaches and quantum chemical calculations, finding strong evidence for fast radical isomerization before accretion. Specifically, this isomerization seems to happen within the intermediate complex of two alkoxy (RO) radicals, which generally determines the branching of all RO2-RO2 reactions. Accretion products are formed when the radicals in the complex recombine. We found that RO with suitable structures can undergo extremely rapid C-C ß scissions before recombination, often resulting in ester products. We also found evidence of this previously overlooked RO2-RO2 reaction pathway forming alkyl accretion products and speculate that some earlier peroxide identifications may in fact be hemiacetals or ethers. Our findings help answer several outstanding questions on the sources of accretion products in organic aerosol and bridge our knowledge of the gas phase formation and particle phase detection of accretion products. As esters are inherently more stable than peroxides, this also impacts their further reactivity in the aerosol.

2.
Nature ; 537(7621): 532-534, 2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27580030

RESUMEN

Homogeneous nucleation and subsequent cluster growth leads to the formation of new aerosol particles in the atmosphere. The nucleation of sulfuric acid and organic vapours is thought to be responsible for the formation of new particles over continents, whereas iodine oxide vapours have been implicated in particle formation over coastal regions. The molecular clustering pathways that are involved in atmospheric particle formation have been elucidated in controlled laboratory studies of chemically simple systems, but direct molecular-level observations of nucleation in atmospheric field conditions that involve sulfuric acid, organic or iodine oxide vapours have yet to be reported. Here we present field data from Mace Head, Ireland, and supporting data from northern Greenland and Queen Maud Land, Antarctica, that enable us to identify the molecular steps involved in new particle formation in an iodine-rich, coastal atmospheric environment. We find that the formation and initial growth process is almost exclusively driven by iodine oxoacids and iodine oxide vapours, with average oxygen-to-iodine ratios of 2.4 found in the clusters. On the basis of this high ratio, together with the high concentrations of iodic acid (HIO3) observed, we suggest that cluster formation primarily proceeds by sequential addition of HIO3, followed by intracluster restructuring to I2O5 and recycling of water either in the atmosphere or on dehydration. Our study provides ambient atmospheric molecular-level observations of nucleation, supporting the previously suggested role of iodine-containing species in the formation of new aerosol particles, and identifies the key nucleating compound.

3.
Nature ; 533(7604): 521-6, 2016 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-27225125

RESUMEN

Atmospheric aerosols and their effect on clouds are thought to be important for anthropogenic radiative forcing of the climate, yet remain poorly understood. Globally, around half of cloud condensation nuclei originate from nucleation of atmospheric vapours. It is thought that sulfuric acid is essential to initiate most particle formation in the atmosphere, and that ions have a relatively minor role. Some laboratory studies, however, have reported organic particle formation without the intentional addition of sulfuric acid, although contamination could not be excluded. Here we present evidence for the formation of aerosol particles from highly oxidized biogenic vapours in the absence of sulfuric acid in a large chamber under atmospheric conditions. The highly oxygenated molecules (HOMs) are produced by ozonolysis of α-pinene. We find that ions from Galactic cosmic rays increase the nucleation rate by one to two orders of magnitude compared with neutral nucleation. Our experimental findings are supported by quantum chemical calculations of the cluster binding energies of representative HOMs. Ion-induced nucleation of pure organic particles constitutes a potentially widespread source of aerosol particles in terrestrial environments with low sulfuric acid pollution.


Asunto(s)
Aerosoles/química , Atmósfera/química , Cambio Climático , Iones/química , Oxígeno/química , Material Particulado/química , Contaminación del Aire/análisis , Monoterpenos Bicíclicos , Radiación Cósmica , Actividades Humanas , Monoterpenos/química , Oxidación-Reducción , Ozono/química , Tamaño de la Partícula , Teoría Cuántica , Ácidos Sulfúricos/análisis , Volatilización
4.
J Phys Chem A ; 125(17): 3726-3738, 2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-33885310

RESUMEN

Oxidized organic compounds are expected to contribute to secondary organic aerosol (SOA) if they have sufficiently low volatilities. We estimated saturation vapor pressures and activity coefficients (at infinite dilution in water and a model water-insoluble organic phase) of cyclohexene- and α-pinene-derived accretion products, "dimers", using the COSMOtherm19 program. We found that these two property estimates correlate with the number of hydrogen bond-donating functional groups and oxygen atoms in the compound. In contrast, when the number of H-bond donors is fixed, no clear differences are seen either between functional group types (e.g., OH or OOH as H-bond donors) or the formation mechanisms (e.g., gas-phase radical recombination vs liquid-phase closed-shell esterification). For the cyclohexene-derived dimers studied here, COSMOtherm19 predicts lower vapor pressures than the SIMPOL.1 group-contribution method in contrast to previous COSMOtherm estimates using older parameterizations and nonsystematic conformer sampling. The studied dimers can be classified as low, extremely low, or ultra-low-volatility organic compounds based on their estimated saturation mass concentrations. In the presence of aqueous and organic aerosol particles, all of the studied dimers are likely to partition into the particle phase and thereby contribute to SOA formation.

5.
Proc Natl Acad Sci U S A ; 113(43): 12053-12058, 2016 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-27790989

RESUMEN

The magnitude of aerosol radiative forcing caused by anthropogenic emissions depends on the baseline state of the atmosphere under pristine preindustrial conditions. Measurements show that particle formation in atmospheric conditions can occur solely from biogenic vapors. Here, we evaluate the potential effect of this source of particles on preindustrial cloud condensation nuclei (CCN) concentrations and aerosol-cloud radiative forcing over the industrial period. Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations. Consequently, preindustrial cloud albedo is increased more than under present day conditions, and therefore the cooling forcing of anthropogenic aerosols is reduced. The mechanism increases CCN concentrations by 20-100% over a large fraction of the preindustrial lower atmosphere, and the magnitude of annual global mean radiative forcing caused by changes of cloud albedo since 1750 is reduced by [Formula: see text] (27%) to [Formula: see text] Model uncertainties, relatively slow formation rates, and limited available ambient measurements make it difficult to establish the significance of a mechanism that has its dominant effect under preindustrial conditions. Our simulations predict more particle formation in the Amazon than is observed. However, the first observation of pure organic nucleation has now been reported for the free troposphere. Given the potentially significant effect on anthropogenic forcing, effort should be made to better understand such naturally driven aerosol processes.


Asunto(s)
Aerosoles/análisis , Atmósfera/análisis , Modelos Estadísticos , Aerosoles/química , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/química , Atmósfera/química , Clima , Simulación por Computador , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Desarrollo Industrial/historia , Incertidumbre
6.
Geophys Res Lett ; 44(5): 2562-2570, 2017 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-28503004

RESUMEN

Secondary organic aerosols (SOA) forms a major fraction of organic aerosols in the atmosphere. Knowledge of SOA properties that affect their dynamics in the atmosphere is needed for improving climate models. By combining experimental and modeling techniques, we investigated the factors controlling SOA evaporation under different humidity conditions. Our experiments support the conclusion of particle phase diffusivity limiting the evaporation under dry conditions. Viscosity of particles at dry conditions was estimated to increase several orders of magnitude during evaporation, up to 109 Pa s. However, at atmospherically relevant relative humidity and time scales, our results show that diffusion limitations may have a minor effect on evaporation of the studied α-pinene SOA particles. Based on previous studies and our model simulations, we suggest that, in warm environments dominated by biogenic emissions, the major uncertainty in models describing the SOA particle evaporation is related to the volatility of SOA constituents.

7.
Natl Sci Rev ; 11(1): nwad138, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38116089

RESUMEN

New particle formation (NPF) in the tropical free troposphere (FT) is a globally important source of cloud condensation nuclei, affecting cloud properties and climate. Oxidized organic molecules (OOMs) produced from biogenic volatile organic compounds are believed to contribute to aerosol formation in the tropical FT, but without direct chemical observations. We performed in situ molecular-level OOMs measurements at the Bolivian station Chacaltaya at 5240 m above sea level, on the western edge of Amazonia. For the first time, we demonstrate the presence of OOMs, mainly with 4-5 carbon atoms, in both gas-phase and particle-phase (in terms of mass contribution) measurements in tropical FT air from Amazonia. These observations, combined with air mass history analyses, indicate that the observed OOMs are linked to isoprene emitted from the rainforests hundreds of kilometers away. Based on particle-phase measurements, we find that these compounds can contribute to NPF, at least the growth of newly formed nanoparticles, in the tropical FT on a continental scale. Thus, our study is a fundamental and significant step in understanding the aerosol formation process in the tropical FT.

8.
Nat Commun ; 14(1): 1769, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36997509

RESUMEN

Chlorine radicals are strong atmospheric oxidants known to play an important role in the depletion of surface ozone and the degradation of methane in the Arctic troposphere. Initial oxidation processes of chlorine produce chlorine oxides, and it has been speculated that the final oxidation steps lead to the formation of chloric (HClO3) and perchloric (HClO4) acids, although these two species have not been detected in the atmosphere. Here, we present atmospheric observations of gas-phase HClO3 and HClO4. Significant levels of HClO3 were observed during springtime at Greenland (Villum Research Station), Ny-Ålesund research station and over the central Arctic Ocean, on-board research vessel Polarstern during the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC) campaign, with estimated concentrations up to 7 × 106 molecule cm-3. The increase in HClO3, concomitantly with that in HClO4, was linked to the increase in bromine levels. These observations indicated that bromine chemistry enhances the formation of OClO, which is subsequently oxidized into HClO3 and HClO4 by hydroxyl radicals. HClO3 and HClO4 are not photoactive and therefore their loss through heterogeneous uptake on aerosol and snow surfaces can function as a previously missing atmospheric sink for reactive chlorine, thereby reducing the chlorine-driven oxidation capacity in the Arctic boundary layer. Our study reveals additional chlorine species in the atmosphere, providing further insights into atmospheric chlorine cycling in the polar environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA