Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
FASEB J ; 34(4): 5046-5060, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32043636

RESUMEN

Nonalcoholic fatty liver disease is a chronic liver disease which is associated with obesity and insulin resistance. We investigated the implication of REDD1 (Regulated in development and DNA damage response-1), a stress-induced protein in the development of hepatic steatosis. REDD1 expression was increased in the liver of obese mice and morbidly obese patients, and its expression correlated with hepatic steatosis and insulin resistance in obese patients. REDD1 deficiency protected mice from the development of hepatic steatosis induced by high-fat diet (HFD) without affecting body weight gain and glucose intolerance. This protection was associated with a decrease in the expression of lipogenic genes, SREBP1c, FASN, and SCD-1 in liver of HFD-fed REDD1-KO mice. Healthy mitochondria are crucial for the adequate control of lipid metabolism and failure to remove damaged mitochondria is correlated with liver steatosis. Expression of markers of autophagy and mitophagy, Beclin, LC3-II, Parkin, BNIP3L, was enhanced in liver of HFD-fed REDD1-KO mice. The number of mitochondria showing colocalization between LAMP2 and AIF was increased in liver of HFD-fed REDD1-KO mice. Moreover, mitochondria in liver of REDD1-KO mice were smaller than in WT. These results are correlated with an increase in PGC-1α and CPT-1 expression, involved in fatty acid oxidation. In conclusion, loss of REDD1 protects mice from the development of hepatic steatosis.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico/genética , Factores de Transcripción/deficiencia , Adulto , Animales , Autofagia , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Células Cultivadas , Dieta Alta en Grasa/efectos adversos , Acido Graso Sintasa Tipo I/genética , Acido Graso Sintasa Tipo I/metabolismo , Femenino , Eliminación de Gen , Humanos , Masculino , Ratones , Mitofagia , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Biochem Biophys Res Commun ; 458(1): 117-22, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25637533

RESUMEN

The primary cilium is an organelle present in most of the cells of the organism. Ciliopathies are genetic disorders of the primary cilium and can be associated with obesity. We have studied the primary cilium during adipocyte differentiation of human adipose stem cells (hASC). We show here that the size of the primary cilium follows several modifications during adipocyte differentiation. It is absent in growing cells and appears in confluent cells. Interestingly, during the first days of differentiation, the cilium undergoes a dramatic elongation that can be mimicked by dexamethasone alone. Thereafter, its size decreases. It can still be detected in cells that begin to accumulate lipids but is absent in cells that are filled with lipids. The cilium elongation does not seem to affect the localization of proteins associated with the cilium such as Kif3-A or Smoothened. However, Hedgehog signaling, an anti-adipogenic pathway dependent on the primary cilium, is inhibited after three days of differentiation, concomitantly with the cilium size increase. Together, these results shed new light on the primary cilium and could provide us with new information on adipocyte differentiation under normal and pathological conditions.


Asunto(s)
Adipocitos/citología , Adipocitos/metabolismo , Diferenciación Celular , Adipogénesis , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Cilios/metabolismo , Dexametasona/farmacología , Proteínas Hedgehog/metabolismo , Humanos , Cinesinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Receptor Smoothened
3.
Mol Oncol ; 18(7): 1719-1738, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38214418

RESUMEN

Metformin and IACS-010759 are two distinct antimetabolic agents. Metformin, an established antidiabetic drug, mildly inhibits mitochondrial complex I, while IACS-010759 is a new potent mitochondrial complex I inhibitor. Mitochondria is pivotal in the energy metabolism of cells by providing adenosine triphosphate through oxidative phosphorylation (OXPHOS). Hence, mitochondrial metabolism and OXPHOS become a vulnerability when targeted in cancer cells. Both drugs have promising antitumoral effects in diverse cancers, supported by preclinical in vitro and in vivo studies. We present evidence of their direct impact on cancer cells and their immunomodulatory effects. In clinical studies, while observational epidemiologic studies on metformin were encouraging, actual trial results were not as expected. However, IACS-01075 exhibited major adverse effects, thereby causing a metabolic shift to glycolysis and elevated lactic acid concentrations. Therefore, the future outlook for these two drugs depends on preventive clinical trials for metformin and investigations into the plausible toxic effects on normal cells for IACS-01075.


Asunto(s)
Complejo I de Transporte de Electrón , Metformina , Neoplasias , Metformina/uso terapéutico , Metformina/farmacología , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/inmunología , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Animales , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Fosforilación Oxidativa/efectos de los fármacos
4.
Biomedicines ; 10(8)2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-36009475

RESUMEN

Breast adipose tissue (AT) participates in the physiological evolution and remodeling of the mammary gland due to its high plasticity. It is also a favorable microenvironment for breast cancer progression. However, information on the properties of human breast adipose progenitor cells (APCs) involved in breast physiology or pathology is scant. We performed differential enzymatic dissociation of human breast AT lobules. We isolated and characterized two populations of APCs. Here we report that these distinct breast APC populations selectively expressed markers suitable for characterization. The population preferentially expressing ALPL (MSCA1) showed higher adipogenic potential. The population expressing higher levels of INHBA and CD142 acquired myofibroblast characteristics upon TGF-ß treatment and a myo-cancer-associated fibroblast profile in the presence of breast cancer cells. This population expressed the immune checkpoint CD274 (PD-L1) and facilitated the expansion of breast cancer mammospheres compared with the adipogenic population. Indeed, the breast, as with other fat depots, contains distinct types of APCs with differences in their ability to specialize. This indicates that they were differentially involved in breast remodeling. Their interactions with breast cancer cells revealed differences in the potential for tumor dissemination and estrogen receptor expression, and these differences might be relevant to improve therapies targeting the tumor microenvironment.

5.
Biomedicines ; 9(1)2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33466493

RESUMEN

Adipose tissue resides in specific depots scattered in peripheral or deeper locations all over the body and it enwraps most of the organs. This tissue is always in a dynamic evolution as it must adapt to the metabolic demand and constraints. It exhibits also endocrine functions important to regulate energy homeostasis. This complex organ is composed of depots able to produce opposite functions to monitor energy: the so called white adipose tissue acts to store energy as triglycerides preventing ectopic fat deposition while the brown adipose depots dissipate it. It is composed of many cell types. Different types of adipocytes constitute the mature cells specialized to store or burn energy. Immature adipose progenitors (AP) presenting stem cells properties contribute not only to the maintenance but also to the expansion of this tissue as observed in overweight or obese individuals. They display a high regeneration potential offering a great interest for cell therapy. In this review, we will depict the attributes of the distinct types of adipocytes and their contribution to the function and metabolic features of adipose tissue. We will examine the specific role and properties of distinct depots according to their location. We will consider their cellular heterogeneity to present an updated picture of this sophisticated tissue. We will also introduce new trends pointing out a rational targeting of adipose tissue for medical applications.

6.
Cells ; 10(7)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34360002

RESUMEN

Fibrosis is a deleterious invasion of tissues associated with many pathological conditions, such as Duchenne muscular dystrophy (DMD) for which no cure is at present available for its prevention or its treatment. Fibro-adipogenic progenitors (FAPs) are resident cells in the human skeletal muscle and can differentiate into myofibroblasts, which represent the key cell population responsible for fibrosis. In this study, we delineated the pool of microRNAs (miRNAs) that are specifically modulated by TGFß1 in FAPs versus myogenic progenitors (MPs) by a global miRNome analysis. A subset of candidates, including several "FibromiRs", was found differentially expressed between FAPs and MPs and was also deregulated in DMD versus healthy biopsies. Among them, the expression of the TGFß1-induced miR-199a~214 cluster was strongly correlated with the fibrotic score in DMD biopsies. Loss-of-function experiments in FAPs indicated that a miR-214-3p inhibitor efficiently blocked expression of fibrogenic markers in both basal conditions and following TGFß1 stimulation. We found that FGFR1 is a functional target of miR-214-3p, preventing the signaling of the anti-fibrotic FGF2 pathway during FAP fibrogenesis. Overall, our work demonstrates that the « FibromiR ¼ miR-214-3p is a key activator of FAP fibrogenesis by modulating the FGF2/FGFR1/TGFß axis, opening new avenues for the treatment of DMD.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos/genética , MicroARNs/genética , Distrofia Muscular de Duchenne/genética , Miofibroblastos/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Células Madre/metabolismo , Factor de Crecimiento Transformador beta1/genética , Adipocitos/metabolismo , Adipocitos/patología , Adipogénesis/genética , Adolescente , Adulto , Secuencia de Bases , Diferenciación Celular , Niño , Femenino , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Fibrosis , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Miofibroblastos/patología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal , Células Madre/patología , Factor de Crecimiento Transformador beta1/metabolismo
7.
Stem Cells ; 27(3): 703-13, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19096040

RESUMEN

Mesenchymal stem cells within the bone are responsible for the generation of osteoblasts, chondrocytes, and adipocytes. In rodents, Indian hedgehog has been shown to play a role in osteoblast differentiation. However, evidence for a direct function of hedgehog (Hh) in human osteoblastic differentiation is missing. Using different models of human mesenchymal stem cells we show that Hh signaling decreases during osteoblast differentiation. This is associated with a decrease in Smoothened expression, a key partner that triggers Hh signaling, and in the number of cells displaying a primary cilium, an organelle necessary for Hh signaling. Remarkably, treatment of human mesenchymal stem cells with sonic hedgehog or two molecules able to activate Hh signaling inhibits osteoblast differentiation. This inhibition is visualized through a decrease in mineralization and in the expression of osteoblastic genes. In particular, activation of Hh signaling induces a decrease in Runx2 expression, a key transcriptional factor controlling the early stage of osteoblast differentiation. Consistently, the activation of Hh signaling during the first days of differentiation is sufficient to inhibit osteoblast differentiation, whereas differentiated osteoblasts are not affected by Hh signaling. In summary, we show here, using various inducers of Hh signaling and mesenchymal stem cells of two different origins, that Hh signaling inhibits human osteoblast differentiation, in sharp contrast to what has been described in rodent cells. This species difference should be taken into account for screening for pro-osteogenic molecules.


Asunto(s)
Diferenciación Celular/fisiología , Proteínas Hedgehog/metabolismo , Células Madre Mesenquimatosas/citología , Transducción de Señal/fisiología , Fosfatasa Alcalina/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Medios de Cultivo Condicionados/farmacología , Regulación de la Expresión Génica , Humanos , Hidroxicolesteroles/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Morfolinas/farmacología , Células T Asesinas Naturales , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Purinas/farmacología , Transducción de Señal/efectos de los fármacos
8.
Cells ; 9(10)2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-33049976

RESUMEN

Cancer associated fibroblasts (CAFs) are central elements of the microenvironment that control tumor development. In breast cancer, CAFs can originate from adipose progenitors (APs). We, and others, have shown that the primary cilium, an antenna-shaped organelle, controls several aspects of APs' biology. We studied the conversion of human APs into CAFs by breast cancer cell lines (BCCs). Deletion of the cilium of APs by a pharmacological inhibitor, or by siRNA, allow us to demonstrate that the cilium is necessary for the differentiation of APs into CAFs. BCCs increase production of TGF-ß1 by APs, which is a known inducer of CAFs. Pharmacological inhibition of TGF-ß1 signaling in APs prevents their conversion into CAFs. Since we previously showed that deletion of the APs' cilium inhibits TGF-ß1 signaling, we propose that BCCs induce TGF-ß1 production in Aps, which binds to the primary cilium of Aps and leads to their differentiation into CAFs. Inhibition of APs conversion into CAFs induces a loss in some of the biological effects of CAFs since deletion of the cilium of APs decreases their effect on the migration of BCCs. This is the first observation of a function of the cilium of APs in their conversion into CAFs, and its consequences on BCCs.


Asunto(s)
Fibroblastos Asociados al Cáncer/metabolismo , Cilios/metabolismo , Células Madre Mesenquimatosas/metabolismo , Tejido Adiposo/metabolismo , Neoplasias de la Mama/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Proliferación Celular/efectos de los fármacos , Cilios/fisiología , Fibroblastos/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , Células Madre Mesenquimatosas/fisiología , Transducción de Señal/efectos de los fármacos , Células Madre/metabolismo , Células Madre/fisiología , Factor de Crecimiento Transformador beta1/genética , Microambiente Tumoral/fisiología
9.
Biochem Biophys Res Commun ; 386(1): 96-100, 2009 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-19501568

RESUMEN

HIV-protease inhibitors (PIs) markedly decreased mortality of HIV-infected patients. However, their use has been associated with occurence of metabolic abnormalities the causes of which are not well understood. We report here that lopinavir, one of the most prescribed PI, dose-dependently co-induced insulin resistance and ER stress in human adipocytes obtained from differentiation of precursor cells. Insulin resistance was subsequent to IRS1 phosphorylation defects and resulted in a concentration-dependent decrease of glucose uptake. The major ER stress pathway involved was the phosphorylation of eIF2-alpha. Salubrinal, a selective eIF2-alpha dephosphorylation inhibitor, induced insulin resistance by targeting IRS1 phosphorylation at serine 312 and acted synergistically with LPV when both drugs were used in combination. This study points out the key role of eIF2-alpha phosphorylation in the development of PI-associated insulin resistance and ER stress. Thus, this protein represents a promising therapeutic target for development of new PIs devoid of adverse metabolic effects.


Asunto(s)
Adipocitos/efectos de los fármacos , Factor 2 Eucariótico de Iniciación/metabolismo , Inhibidores de la Proteasa del VIH/efectos adversos , Resistencia a la Insulina , Pirimidinonas/efectos adversos , Adipocitos/metabolismo , Línea Celular , Cinamatos/farmacología , Retículo Endoplásmico/metabolismo , Inhibidores de la Proteasa del VIH/farmacología , Humanos , Proteínas Sustrato del Receptor de Insulina/metabolismo , Lopinavir , Fosforilación , Pirimidinonas/farmacología , Tiourea/análogos & derivados , Tiourea/farmacología
10.
Stem Cells ; 26(4): 1037-46, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18258719

RESUMEN

Human stem cells are powerful tools by which to investigate molecular mechanisms of cell growth and differentiation under normal and pathological conditions. Hedgehog signaling, the dysregulation of which causes several pathologies, such as congenital defects and cancer, is involved in several cell differentiation processes and interferes with adipocyte differentiation of rodent cells. The present study was aimed at investigating the effect of Hedgehog pathway modulation on adipocyte phenotype using different sources of human mesenchymal cells, such as bone marrow stromal cells and human multipotent adipose-derived stem cells. We bring evidence that Hedgehog signaling decreases during human adipocyte differentiation. Inhibition of this pathway is not sufficient to trigger adipogenesis, but activation of Hedgehog pathway alters adipocyte morphology as well as insulin sensitivity. Analysis of glycerol-3-phosphate dehydrogenase activity and expression of adipocyte marker genes indicate that activation of Hedgehog signaling by purmorphamine impairs adipogenesis. In sharp contrast to reports in rodent cells, the maturation process, but not the early steps of human mesenchymal stem cell differentiation, is affected by Hedgehog activation. Hedgehog interferes with adipocyte differentiation by targeting CCAAT enhancer-binding protein alpha and peroxisome proliferator-activated receptor (PPAR) gamma2 expression, whereas PPARgamma1 level remains unaffected. Although Hedgehog pathway stimulation does not modify the total number of adipocytes, adipogenesis appears dramatically impaired, with reduced lipid accumulation, a decrease in adipocyte-specific markers, and acquisition of an insulin-resistant phenotype. This study indicates that a decrease in Hedgehog signaling is necessary but not sufficient to trigger adipocyte differentiation and unveils a striking difference in the adipocyte differentiation process between rodent and human mesenchymal stem cells.


Asunto(s)
Adipocitos/fisiología , Diferenciación Celular/fisiología , Proteínas Hedgehog/fisiología , Células Madre Mesenquimatosas/fisiología , Transducción de Señal/fisiología , Adipocitos/citología , Adipocitos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Femenino , Proteínas Hedgehog/metabolismo , Humanos , Lactante , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Morfolinas/farmacología , Purinas/farmacología , Transducción de Señal/efectos de los fármacos
11.
BMC Cell Biol ; 9: 11, 2008 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-18271953

RESUMEN

BACKGROUND: Multipotent stem cells exist within adipose tissue throughout life. An abnormal recruitment of these adipose precursor cells could participate to hyperplasia of adipose tissue observed in severe obesity or to hypoplasia of adipose tissue observed in lipodystrophy. Therefore, pharmacological molecules that control the pool of stem cells in adipose tissue are of great interest. Glycogen Synthase Kinase (GSK) 3 has been previously described as involved in differentiation of preadipose cells and might be a potential therapeutic target to modulate proliferation and differentiation of adipocyte precursors. However, the impact of GSK3 inhibition on human adipose-derived stem cells remained to be investigated. The aim of this study was to investigate GSK3 as a possible target for pharmacological inhibition of stem cell adipogenesis. To reach this goal, we studied the effects of pharmacological inhibitors of GSK3, i.e. lithium chloride (LiCl) and BIO on proliferation and adipocyte differentiation of multipotent stem cells derived from human adipose tissue. RESULTS: Our results showed that GSK3 inhibitors inhibited proliferation and clonogenicity of human stem cells, strongly suggesting that GSK3 inhibitors could be potent regulators of the pool of adipocyte precursors in adipose tissue. The impact of GSK3 inhibition on differentiation of hMADS cells was also investigated. Adipogenic and osteogenic differentiations were inhibited upon hMADS treatment with BIO. Whereas a chronic treatment was required to inhibit osteogenesis, a treatment that was strictly restricted to the early step of differentiation was sufficient to inhibit adipogenesis. CONCLUSION: These results demonstrated the feasibility of a pharmacological approach to regulate adipose-derived stem cell function and that GSK3 could represent a potential target for controlling adipocyte precursor pool under conditions where fat tissue formation is impaired.


Asunto(s)
Adipocitos/citología , Tejido Adiposo/citología , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Células Madre/citología , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Adipogénesis/efectos de los fármacos , Adipogénesis/fisiología , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Preescolar , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Inmunohistoquímica , Lactante , Cloruro de Litio/farmacología , Masculino , Células Madre/efectos de los fármacos , Células Madre/metabolismo
12.
Biochimie ; 89(12): 1447-53, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17933451

RESUMEN

Morphogenes, abundantly described during embryogenesis have recently emerged as crucial modulators of cell differentiation processes. Hedgehog signaling, the dysregulation of which causing several pathologies such as congenital defects and cancer, is involved in several cell differentiation processes including adipogenesis. This review presents an overview of the relations between Hedgehog signaling, adipocyte differentiation and fat mass. While the anti-adipogenic role of Hedgehog signaling seems to be established, the effect of Hedgehog inhibition on adipocyte differentiation in vitro remains debated. Finally, Hedgehog potential as a pharmacological target to treat fat mass disorders is discussed.


Asunto(s)
Adipocitos/citología , Adipogénesis , Proteínas Hedgehog/metabolismo , Obesidad/genética , Adipocitos/metabolismo , Animales , Diferenciación Celular , Proteínas Hedgehog/antagonistas & inhibidores , Lipodistrofia/metabolismo , Modelos Biológicos , Obesidad/metabolismo , Transducción de Señal
13.
Sci Rep ; 7(1): 7023, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28765650

RESUMEN

In response to endotoxemia, the organism triggers an inflammatory response, and the visceral adipose tissue represents a major source of proinflammatory cytokines. The regulation of inflammation response in the adipose tissue is thus of crucial importance. We demonstrated that Regulated in development and DNA damage response-1 (REDD1) is involved in inflammation. REDD1 expression was increased in response to lipopolysaccharide (LPS) in bone marrow derived macrophages (BMDM) and in epidydimal adipose tissue. Loss of REDD1 protected the development of inflammation, since the expression of proinflammatory cytokines (TNFα, IL-6, IL-1ß) was decreased in adipose tissue of REDD1-/- mice injected with LPS compared to wild-type mice. This decrease was associated with an inhibition of the activation of p38MAPK, JNK, NF-κB and NLRP3 inflammasome leading to a reduction of IL-1ß secretion in response to LPS and ATP in REDD1-/- BMDM. Although REDD1 is an inhibitor of mTORC1, loss of REDD1 decreased inflammation independently of mTORC1 activation but more likely through oxidative stress regulation. Absence of REDD1 decreases ROS associated with a dysregulation of Nox-1 and GPx3 expression. Absence of REDD1 in macrophages decreases the development of insulin resistance in adipocyte-macrophage coculture. Altogether, REDD1 appears to be a key player in the control of inflammation.


Asunto(s)
Endotoxinas/toxicidad , Inflamación/inducido químicamente , Inflamación/fisiopatología , Factores de Transcripción/metabolismo , Tejido Adiposo/patología , Animales , Citocinas/metabolismo , Epidídimo/patología , Macrófagos/inmunología , Masculino , Ratones , Ratones Noqueados , Factores de Transcripción/deficiencia
14.
Sci Rep ; 7(1): 2954, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28592806

RESUMEN

Autologous fat grafting is a gold standard therapy for soft tissue defects, but is hampered by unpredictable postoperative outcomes. Fat graft enrichment with adipose-derived stromal cell (ASCs) was recently reported to enhance graft survival. Platelet-rich plasma (PRP) has also emerged as a biologic scaffold that promotes fat graft viability. Combined ASC/PRP fat grafting enrichment is thus a promising new regenerative medicine approach. The effects of PRP on ASC proliferation are well documented, but the impact of PRP on ASC differentiation has yet to be investigated in depth to further elucidate the PRP clinical effects. Here we analyzed the human ASC fate upon PRP treatment. PRP was found to sharply reduce the potential of ASCs to undergo differentiation into adipocytes. Interestingly, the PRP anti-adipogenic effect was accompanied by the generation of myofibroblast-like cells. Among the various factors released from PRP, TGFß pathway activators played a critical role in both the anti-adipogenic and pro-myofibroblastic PRP effects. Overall, these data suggest that PRP participates in maintaining a pool of ASCs and in the repair process by promoting ASC differentiation into myofibroblast-like cells. TGFß may provide an important target pathway to improve PRP clinical outcomes.


Asunto(s)
Adipogénesis , Tejido Adiposo/citología , Diferenciación Celular , Miofibroblastos/citología , Miofibroblastos/metabolismo , Plasma Rico en Plaquetas/metabolismo , Células del Estroma/citología , Células del Estroma/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Adipocitos/citología , Adipocitos/metabolismo , Anciano , Benzamidas/farmacología , Células Cultivadas , Dioxoles/farmacología , Femenino , Humanos , Lactante , Masculino , Fenotipo
15.
Biochimie ; 124: 112-123, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26363102

RESUMEN

The primary cilium is an organelle present in most of the cells of the organism. Ciliopathies, such as the Bardet Biedl and the Alstrom syndromes are associated with obesity. We, and others, have shown that the primary cilium undergoes size modifications during adipocyte differentiation of human adipose stromal cells. We show here that the levels of acetylated α-tubulin, a constituent of the primary cilium, and the expression of HDAC6, the enzyme that deacetylates α-tubulin and is responsible for the loss of the cilium during mitosis, are modulated during adipogenesis. Moreover, during adipocyte differentiation cells that express higher level of HDAC6 are the first to lose their primary cilium. We have investigated the function of HDAC6 on adipocyte differentiation and on the primary cilium. We observe that inhibition of HDAC6 activity leads to a decrease in adipocyte differentiation. This is associated with an inhibition of the initial elongation of the cilium. Interestingly, overexpression of HDAC6 inhibits adipocyte differentiation and blunts the elongation of the primary cilium. In both situations, inhibition of adipocyte differentiation was not associated with an inhibition of the glucocorticoid receptor activity. This indicates that HDAC6 controls adipogenesis through the levels of acetylated α-tubulin. Moreover, we show that although HDAC6 expression increases during adipocyte differentiation it is not sufficient to provoke the loss of the cilium. This suggests the existence of a novel mechanism for the loss of the cilium. Together, these data indicate that HDAC6, and acetylated α-tubulin, are important regulator of adipocyte differentiation.


Asunto(s)
Adipocitos/metabolismo , Adipogénesis/fisiología , Diferenciación Celular/fisiología , Histona Desacetilasas/metabolismo , Tubulina (Proteína)/metabolismo , Acetilación , Adipocitos/citología , Línea Celular , Cilios/metabolismo , Histona Desacetilasa 6 , Humanos
16.
Sci Rep ; 6: 32490, 2016 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-27577850

RESUMEN

Human induced pluripotent stem cells (hiPSCs) show great promise for obesity treatment as they represent an unlimited source of brown/brite adipose progenitors (BAPs). However, hiPSC-BAPs display a low adipogenic capacity compared to adult-BAPs when maintained in a traditional adipogenic cocktail. The reasons of this feature are unknown and hamper their use both in cell-based therapy and basic research. Here we show that treatment with TGFß pathway inhibitor SB431542 together with ascorbic acid and EGF were required to promote hiPSCs-BAP differentiation at a level similar to adult-BAP differentiation. hiPSC-BAPs expressed the molecular identity of adult-UCP1 expressing cells (PAX3, CIDEA, DIO2) with both brown (ZIC1) and brite (CD137) adipocyte markers. Altogether, these data highlighted the critical role of TGFß pathway in switching off hiPSC-brown adipogenesis and revealed novel factors to unlock their differentiation. As hiPSC-BAPs display similarities with adult-BAPs, it opens new opportunities to develop alternative strategies to counteract obesity.


Asunto(s)
Adipocitos Marrones/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Transducción de Señal/genética , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Adipocitos Marrones/citología , Adipocitos Marrones/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Ácido Ascórbico/farmacología , Benzamidas/farmacología , Biomarcadores/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular , Dioxoles/farmacología , Factor de Crecimiento Epidérmico/farmacología , Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Factor de Transcripción PAX3/genética , Factor de Transcripción PAX3/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/genética , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Yodotironina Deyodinasa Tipo II
17.
Diabetes ; 53 Suppl 3: S97-S103, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15561930

RESUMEN

Defects in insulin secretion, resulting from loss of function or destruction of pancreatic beta-cells, trigger diabetes. Interleukin (IL)-1beta is a proinflammatory cytokine that is involved in type 1 and type 2 diabetes development and impairs beta-cell survival and function. Because effective insulin signaling is required for the optimal beta-cell function, we assessed the effect of IL-1beta on the insulin pathway in a rat pancreatic beta-cell line. We show that IL-1beta decreases insulin-induced tyrosine phosphorylation of the insulin receptor (IR) and insulin receptor substrate (IRS) proteins as well as phosphatidylinositol 3-kinase (PI3K) activation, and that this action is not due to the IL-1beta-dependent nitric oxide (NO) production in RINm5F cells. We next analyzed if suppressor of cytokine signaling (SOCS)-3, which can be induced by multiple cytokines and which we identified as an insulin action inhibitor, was implicated in the IL-1beta inhibitory effect on insulin signaling in these cells. We show that IL-1beta increases SOCS-3 expression and induces SOCS-3/IR complex formation in RINm5F cells. Moreover, we find that ectopically expressed SOCS-3 associates with the IR and reduces insulin-dependent IR autophosphorylation and IRS/PI3K pathway in a way comparable to IL-1beta treatment in RINm5F cells. We propose that IL-1beta decreases insulin action in beta-cells through the induction of SOCS-3 expression, and that this effect potentially alters insulin-induced beta-cell survival.


Asunto(s)
Insulina/metabolismo , Interleucina-1/farmacología , Islotes Pancreáticos/fisiología , Proteínas Represoras/fisiología , Factores de Transcripción/fisiología , Animales , Línea Celular Tumoral , Clonación Molecular , ADN Complementario/genética , Regulación Neoplásica de la Expresión Génica , Secreción de Insulina , Insulinoma , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/inmunología , Neoplasias Pancreáticas , Fosforilación , ARN Mensajero/genética , Ratas , Proteínas Recombinantes/metabolismo , Proteínas Represoras/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Proteína 3 Supresora de la Señalización de Citocinas , Proteínas Supresoras de la Señalización de Citocinas , Factores de Transcripción/genética
18.
Endocrinology ; 156(3): 789-801, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25521582

RESUMEN

During obesity, a hypoxic state develops within the adipose tissue, resulting in insulin resistance. To understand the underlying mechanism, we analyzed the involvement of caveolae because they play a crucial role in the activation of insulin receptors. In the present study, we demonstrate that in 3T3-L1 adipocytes, hypoxia induces the disappearance of caveolae and inhibits the expression of Cavin-1 and Cavin-2, two proteins necessary for the formation of caveolae. In mice, hypoxia induced by the ligature of the spermatic artery results in the decrease of cavin-1 and cavin-2 expression in the epididymal adipose tissue. Down-regulation of the expression of cavins in response to hypoxia is dependent on hypoxia-inducible factor-1. Indeed, the inhibition of hypoxia-inducible factor-1 restores the expression of cavins and caveolae formation. Expression of cavins regulates insulin signaling because the silencing of cavin-1 and cavin-2 impairs insulin signaling pathway. In human, cavin-1 and cavin-2 are decreased in the sc adipose tissue of obese diabetic patients compared with lean subjects. Moreover, the expression of cavin-2 correlates negatively with the homeostatic model assessment index of insulin resistance and glycated hemoglobin level. In conclusion, we propose a new mechanism in which hypoxia inhibits cavin-1 and cavin-2 expression, resulting in the disappearance of caveolae. This leads to the inhibition of insulin signaling and the establishment of insulin resistance.


Asunto(s)
Adipocitos/efectos de los fármacos , Caveolas/fisiología , Proteínas de la Membrana/metabolismo , Oxígeno/farmacología , Proteínas de Unión al ARN/metabolismo , Células 3T3-L1 , Adipocitos/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Regulación hacia Abajo , Femenino , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Obesidad , Proteínas de Unión a Fosfato , Interferencia de ARN , ARN Interferente Pequeño , Proteínas de Unión al ARN/genética , Transducción de Señal
20.
PLoS One ; 7(12): e52154, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23272222

RESUMEN

REDD1 (Regulated in development and DNA damage response 1) is a hypoxia and stress response gene and is a negative regulator of mTORC1. Since mTORC1 is involved in the negative feedback loop of insulin signaling, we have studied the role of REDD1 on insulin signaling pathway and its regulation by insulin. In human and murine adipocytes, insulin transiently stimulates REDD1 expression through a MEK dependent pathway. In HEK-293 cells, expression of a constitutive active form of MEK stabilizes REDD1 and protects REDD1 from proteasomal degradation mediated by CUL4A-DDB1 ubiquitin ligase complex. In 3T3-L1 adipocytes, silencing of REDD1 with siRNA induces an increase of mTORC1 activity as well as an inhibition of insulin signaling pathway and lipogenesis. Rapamycin, a mTORC1 inhibitor, restores the insulin signaling after downregulation of REDD1 expression. This observation suggests that REDD1 positively regulates insulin signaling through the inhibition of mTORC1 activity. In conclusion, our results demonstrate that insulin increases REDD1 expression, and that REDD1 participates in the biological response to insulin.


Asunto(s)
Adipocitos/metabolismo , Insulina/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Animales , Activación Enzimática , Células HEK293 , Humanos , Insulina/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA