Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 89(1): 980-987, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-27958696

RESUMEN

A method for digestion of soils with high inorganic matter content (ranging from 50 to 92%) by microwave-induced combustion (MIC) is proposed for the first time for further halogens (F, Cl, Br, and I) determination by ion chromatography (IC) and also by inductively coupled plasma mass spectrometry (ICP-MS). Microcrystalline cellulose (100-500 mg), used as a combustion aid, was mixed with sample and water or NH4OH solutions (10-100 mmol L-1) were investigated for analytes absorption. The use of cellulose (400 mg) was mandatory to volatilize the halogens from soils with high inorganic matter. It was possible to use diluted absorbing solutions (up to 100 mmol L-1 NH4OH) for halogens retention, providing limits of quantification in the range of 0.06 (I) to 60 (Cl) µg g-1. Accuracy was evaluated using certified reference materials (CRMs), spiked samples, and pyrohydrolysis method. Recoveries for halogens after spiked samples were in the range of 94 to 103% and the results after digestion of CRMs by MIC were in agreement better than 95% to certified values. Blanks were low, relative standard deviation was below 8% for all soils and no statistical difference was observed for results by pyrohydrolysis and MIC methods showing the feasibility of the proposed method for further halogens determination in soil samples.

2.
Anal Chem ; 85(22): 11034-40, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24134679

RESUMEN

A method for heavy and extraheavy crude oil digestion based on microwave-assisted wet digestion (MW-AD) and ultraviolet (UV) radiation using diluted HNO3 was applied for the determination of rare earth elements (REE) by inductively coupled plasma mass spectrometry (ICPMS) with an ultrasonic nebulizer (USN). Even using pressurized systems conventional acid digestion is not feasible for efficient crude oil digestion, especially for heavy and extraheavy crude oils that generally present high amounts of asphaltenes and resins. In the proposed system, UV radiation is generated in situ by immersed electrodeless Cd discharge lamps positioned inside quartz vessels. The use of diluted solutions (1-14.4 mol L(-1) HNO3 and 1-4 mol L(-1) H2O2) were evaluated for heavy and extraheavy crude oil digestion (API density of 11.1-19.0). With the proposed method the residual carbon content was lower than 13 mg C/100 mg of sample, and it was possible to digest sample masses up to 500 mg using 4 mol L(-1) HNO3 and 4 mol L(-1) H2O2. Interferences caused by excessive acid concentration and carbon content in digests were minimized allowing limits of quantification for REEs as low as 0.3 ng g(-1). Samples were also digested using MW-AD in pressurized systems with concentrated HNO3, but even using 280 °C, 80 bar, and concentrated HNO3, MW-AD method was not suitable for REE determination due to interferences in ICPMS determination. The combination of microwave heating with UV was considered a suitable and effective way to digest crude oil allowing further determination of low concentrations of REE by ICPMS.

3.
Anal Chim Acta ; 1010: 29-36, 2018 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-29447668

RESUMEN

A simple and automated system based on combustion followed by a pyrohydrolysis reaction was proposed for further halogens determination. This system was applied for digestion of soils containing high (90%) and also low (10%) organic matter content for further halogens determination. The following parameters were evaluated: sample mass, use of microcrystalline cellulose and heating time. For analytes absorption, a diluted alkaline solution (6 mL of 25 mmol L-1 NH4OH) was used in all experiments. Up to 400 mg of soil with high organic matter content and 100 mg of soil with low organic matter content (mixed with 400 mg of cellulose) could be completely digested using the proposed system. Quantitative results for all halogens were obtained using less than 12 min of sample preparation step (about 1.8 min for sample combustion and 10 min for pyrohydrolysis). The accuracy was evaluated using a certified reference material of coal and spiked samples. No statistical difference was observed between the certified values and results obtained by the proposed method. Additionally, the recoveries obtained using spiked samples were in the range of 98-103% with relative standard deviation values lower than 5%. The limits of quantification obtained for F, Cl, Br and I for soil with high (400 mg of soil) and low (100 mg of soil) organic matter were in the range of 0.01-2 µg g-1 and 0.07-59 µg g-1, respectively. The proposed system was considered as a simple and suitable alternative for soils digestion for further halogens determination by ion chromatography and inductively coupled plasma mass spectrometry techniques.

4.
Anal Chim Acta ; 844: 8-14, 2014 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-25172810

RESUMEN

A procedure for light and heavy crude oils digestion by microwave-induced combustion (MIC) is proposed for the first time for further rare earth elements (REE) determination by inductively coupled plasma mass spectrometry (ICP-MS) equipped with an ultrasonic nebulizer (USN). Samples of crude oil (API density of 10.8-23.5, up to 250 mg) were inserted in polycarbonate capsules and combusted using 20 bar of oxygen and 50 µL of 6 mol L(-1) ammonium nitrate as igniter. Nitric acid solutions (1-14.4 mol L(-1)) were evaluated for analyte absorption and a reflux step was applied after combustion (5 min of microwave irradiation at 1400 W) in order to achieve better analyte recoveries. Accuracy was evaluated using a spiked sample and also by comparison of results obtained by microwave-assisted digestion combined to ultraviolet radiation (MW-UV) and by neutron activation analysis (NAA). Using 3 mol L(-1) HNO3, quantitative recoveries (better than 97%) were obtained for all analytes. Blank values were always negligible. Agreement was higher than 96% for La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y by comparison of results with those obtained by MW-UV and by NAA (only for La, Ce, Nd, Sm, and Yb). Residual carbon content in digests using MIC was always below 1%. As an advantage over conventional procedures for crude oil digestion, using MIC, it was possible to use diluted acid as absorbing solution, obtaining better limits of detection and avoiding interferences in REE determination by USN-ICP-MS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA