Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(6): 3706-3715, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36746755

RESUMEN

Transparent conductors (TCs) play a vital role in displays, solar cells, and emerging printed electronics. Here, we report a solution-processable n-doped organic conductor from copper-catalyzed cascade reactions in the air, which involves oxidative polymerization and reductive doping in one pot. The formed polymer ink is shelf-stable over 20 days and can endure storage temperatures from -20 to 65 °C. The optimized n-doped thin-film TC exhibits a low sheet resistance of 45 Ω/sq and a high transmittance (T550 > 80%), which can rival indium tin oxide. The transparent organic conductor exhibits excellent durability under accelerated weathering tests (85 °C/85% RH). Furthermore, the n-doped polymer film can also function as an electrode material with a high volumetric capacity. When it is paired with p-doped PEDOT:PSS, a record-high coloration efficiency is obtained in a dual-polymer electrochromic device.

2.
ACS Macro Lett ; 11(2): 243-250, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35574776

RESUMEN

Organic electrochemical transistors (OECTs) are an emerging platform for bioelectronic applications. Significant effort has been placed in designing advanced polymers that simultaneously transport both charge and ions (i.e., macromolecules that are mixed conductors). However, the considerations for mixed organic conductors are often different from the established principles that are well-known in the solid-state organic electronics field; thus, the discovery of new OECT macromolecular systems is highly desired. Here, we demonstrate a new materials system by blending a radical polymer (i.e., a macromolecule with a nonconjugated backbone and with stable open-shell sites at its pendant group) with a frequently used conjugated polymer. Specifically, poly(4-glycidyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl) (PTEO) was blended with poly(3-hexylthiophene) (P3HT) to create thin films with distinct closed-shell and open-shell domains. Importantly, the sharp and unique oxidation-reduction (redox) potential associated with the radical moieties of the PTEO chain provided a distinct actuation feature to the blended films that modulated the ionic transport of the OECT devices. In turn, this led to controlled regulation of the doping of the P3HT phase in the composite film. By decoupling the ionic and electronic transport into two distinct phases and by using an ion transport phase with well-controlled redox activity, never-before-seen performance for a P3HT-based OECT was observed. That is, at loadings as low as 5% PTEO (by weight) OECTs achieved figure-of-merit (i.e., µC*) values >150 F V-1 cm-1 s-1, which place the performance on the same order as state-of-the-art conjugated polymers despite the relatively common conjugated macromolecular moiety implemented. As such, this effort presents a design platform by which to readily create a tailored OECT response through strategic macromolecular selection and polymer processing.


Asunto(s)
Polímeros , Transistores Electrónicos , Iones , Polímeros/química
3.
ACS Macro Lett ; 10(8): 1061-1067, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35549113

RESUMEN

Organic electrochemical transistors (OECTs) are oft-used for bioelectronic applications, and a variety of OECT channel materials have been developed in recent years. However, the majority of these materials are still limited by long-term performance and stability challenges. To resolve these issues, we implemented a next-generation design of polymers for OECTs. Specifically, diketopyrrolopyrrole (DPP) building blocks were copolymerized with propylene dioxythiophene-based (Pro-based) monomers to create a donor-acceptor-type conjugated polymer (PProDOT-DPP). These PProDOT-DPP macromolecules were synthesized using a straightforward direct arylation polymerization synthetic route. The PProDOT-DPP polymer thin film exhibited excellent electrochemical response, low oxidation potential, and high crystallinity, as evidenced by spectroelectrochemical measurements and grazing incidence wide-angle X-ray scattering measurements. Thus, the resultant polymer thin films had high charge mobility and volumetric capacitance values (i.e., µC* as high as 310 F cm-1 V-1 s-1) when they were used as the active layer materials in OECT devices, which places PProDOT-DPP among the highest performing accumulation-mode OECT polymers reported to date. The performance of the PProDOT-DPP thin films was also retained for 100 cycles and over 2000 s of ON-OFF cycling, indicating the robust stability of the materials. Therefore, this effort provides a clear roadmap for the design of electrochemically active macromolecules for accumulation-mode OECTs, where crystalline acceptor cores are incorporated into an all-donor polymer. We anticipate that this will ultimately inspire future polymer designs to enable OECTs with both high electrical performance and operational stability.


Asunto(s)
Polímeros , Transistores Electrónicos , Polimerizacion , Polímeros/química
4.
ACS Appl Mater Interfaces ; 12(45): 50889-50895, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33112143

RESUMEN

Organic mixed ionic-electronic conductors (OMIECs) are an emerging family of materials crucial in the development of flexible, bio-, and optoelectronics. In electrochromic polymers, the cyclic redox reaction is associated with a mechanical breathing strain, which deforms the OMIECs and degrades the device reliability. We set forth an in situ nanoindentation approach to measure the breathing strain of a poly(3,4-propylenedioxythiophene) (PProDOT) thin film in a customized liquid cell during electrochromic cycles. A breathing volumetric strain of 12-25% is persistent in different sets of electrolytes of various solvents, salts, and salt molarities. The electrochemical conditioning, intermittence time, and cyclic protocol have minor effects on the mechanical response of PProDOT. The mechanical behavior and anion diffusivity measurement further infer the redox kinetics. Heavily cycled PProDOT films show reduced volumetric strain and accumulated mechanical damage of channel cracks and dysfunctional regions of slow and inhomogeneous electrochromic switching. This work is a systematic characterization of mechanical deformation and damage in a model OMIEC and informs the mechanical reliability of organic electrochromic devices.

5.
Dalton Trans ; 49(23): 7774-7789, 2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32406435

RESUMEN

A series of tris(pyrazolyl)borate mono-, di- and trinuclear complexes, [Tp2Ln]nX (Ln = Eu, Tb, Gd, Dy, Xn- = various mono-, bis- and tris(ß-diketonates) has been prepared. The Tb3+ and Dy3+ complexes are luminescent single molecular magnets (SMM) and exhibit luminescence quantum efficiencies up to 73% for the Tb3+ and 4.4% for the Dy3+ compounds. Similar Eu3+ complexes display bright emission only at lower temperatures. The Dy3+ and Tb3+ complexes possess SMM behavior in a non-zero dc field at low temperatures, while the polynuclear Dy3+ complexes also show slow magnetic relaxation even in zero dc field up to 8 K. Ueff-values determined from dynamic magnetic measurements were up to 31 and 6 cm-1 for the Dy3+ and Tb3+ complexes, respectively. It was found that within a series of Dy3+ and Tb3+ compounds, Ueff and luminescence quantum yields decreased with increasing nuclearity of the compounds and a shortening of the intramolecular Ln-Ln distance. ΔOrbach-values estimated from low-temperature luminescence spectra were significantly higher than those obtained from ac magnetic data, which may be due to involvement of additional processes in the relaxation mechanism (quantum tunneling, Raman, direct) reducing the energy barrier. Some of the Tb3+-compounds also display metal-centred electroluminescence, giving them potential as emitting layers in LEDs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA