RESUMEN
The increase in cancer incidence and mortality is challenging current cancer care delivery globally, disproportionally affecting low- and middle-income countries (LMICs) when it comes to receiving evidence-based cancer prevention, treatment, and palliative and survivorship care. Patients in LMICs often rely on traditional, complementary, and integrative medicine (TCIM) that is more familiar, less costly, and widely available. However, spheres of influence and tensions between conventional medicine and TCIM can further disrupt efforts in evidence-based cancer care. Integrative oncology provides a framework to research and integrate safe, effective TCIM alongside conventional cancer treatment and can help bridge health care gaps in delivering evidence-informed, patient-centered care. This growing field uses lifestyle modifications, mind and body therapies (eg, acupuncture, massage, meditation, and yoga), and natural products to improve symptom management and quality of life among patients with cancer. On the basis of this review of the global challenges of cancer control and the current status of integrative oncology, the authors recommend: 1) educating and integrating TCIM providers into the cancer control workforce to promote risk reduction and culturally salient healthy life styles; 2) developing and testing TCIM interventions to address cancer symptoms or treatment-related adverse effects (eg, pain, insomnia, fatigue); and 3) disseminating and implementing evidence-based TCIM interventions as part of comprehensive palliative and survivorship care so patients from all cultures can live with or beyond cancer with respect, dignity, and vitality. With conventional medicine and TCIM united under a cohesive framework, integrative oncology may provide citizens of the world with access to safe, effective, evidence-informed, and culturally sensitive cancer care.
Asunto(s)
Terapias Complementarias , Medicina Integrativa , Oncología Integrativa , Neoplasias , Atención a la Salud , Humanos , Neoplasias/prevención & control , Calidad de VidaRESUMEN
BAP1 is mutated or deleted in many cancer types, including mesothelioma, uveal melanoma, and cholangiocarcinoma. It is the catalytic subunit of the PR-DUB complex, which removes PRC1-mediated H2AK119ub1, essential for maintaining transcriptional repression. However, the precise relationship between BAP1 and Polycombs remains elusive. Using embryonic stem cells, we show that BAP1 restricts H2AK119ub1 deposition to Polycomb target sites. This increases the stability of Polycomb with their targets and prevents diffuse accumulation of H2AK119ub1 and H3K27me3. Loss of BAP1 results in a broad increase in H2AK119ub1 levels that is primarily dependent on PCGF3/5-PRC1 complexes. This titrates PRC2 away from its targets and stimulates H3K27me3 accumulation across the genome, leading to a general chromatin compaction. This provides evidence for a unifying model that resolves the apparent contradiction between BAP1 catalytic activity and its role in vivo, uncovering molecular vulnerabilities that could be useful for BAP1-related pathologies.
Asunto(s)
Cromatina/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Animales , Línea Celular/metabolismo , Cromatina/genética , Cromatina/fisiología , Células Madre Embrionarias/metabolismo , Heterocromatina , Histonas/metabolismo , Humanos , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Proteínas del Grupo Polycomb/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/fisiología , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/fisiología , UbiquitinaciónRESUMEN
Polycomb group proteins (PcGs) maintain transcriptional repression to preserve cellular identity in two distinct repressive complexes, PRC1 and PRC2, that modify histones by depositing H2AK119ub1 and H3K27me3, respectively. PRC1 and PRC2 exist in different variants and show a complex regulatory cross-talk. However, the contribution that H2AK119ub1 plays in mediating PcG repressive functions remains largely controversial. Using a fully catalytic inactive RING1B mutant, we demonstrated that H2AK119ub1 deposition is essential to maintain PcG-target gene repression in embryonic stem cells (ESCs). Loss of H2AK119ub1 induced a rapid displacement of PRC2 activity and a loss of H3K27me3 deposition. This preferentially affected PRC2.2 variant with respect to PRC2.1, destabilizing canonical PRC1 activity. Finally, we found that variant PRC1 forms can sense H2AK119ub1 deposition, which contributes to their stabilization specifically at sites where this modification is highly enriched. Overall, our data place H2AK119ub1 deposition as a central hub that mounts PcG repressive machineries to preserve cell transcriptional identity.
Asunto(s)
Regulación de la Expresión Génica , Histonas/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Transcripción Genética , Ubiquitinación , Línea Celular , Cromatina/metabolismo , Células Madre Embrionarias/metabolismo , Mutación Missense , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 2/fisiología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
Polycomb repressive complexes 1 and 2 (PRC1 and PRC2) control cell identity by establishing facultative heterochromatin repressive domains at common sets of target genes. PRC1, which deposits H2Aub1 through the E3 ligases RING1A/B, forms six biochemically distinct subcomplexes depending on the assembled PCGF protein (PCGF1-PCGF6); however, it is yet unclear whether these subcomplexes have also specific activities. Here we show that PCGF1 and PCGF2 largely compensate for each other, while other PCGF proteins have high levels of specificity for distinct target genes. PCGF2 associates with transcription repression, whereas PCGF3 and PCGF6 associate with actively transcribed genes. Notably, PCGF3 and PCGF6 complexes can assemble and be recruited to several active sites independently of RING1A/B activity (therefore, of PRC1). For chromatin recruitment, the PCGF6 complex requires the combinatorial activities of its MGA-MAX and E2F6-DP1 subunits, while PCGF3 requires an interaction with the USF1 DNA binding transcription factor.
Asunto(s)
Complejo Represivo Polycomb 1/genética , Transcripción Genética , Ubiquitina-Proteína Ligasas/genética , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Cromatina/genética , Proteínas de Unión al ADN/genética , Factor de Transcripción E2F6/genética , Heterocromatina/genética , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Complejo Represivo Polycomb 2/genética , Proteínas del Grupo Polycomb/genética , Proteínas Represoras/genética , Factor de Transcripción DP1/genética , Factores de Transcripción/genética , Factores Estimuladores hacia 5'/genéticaRESUMEN
Influenza A virus (FLUAV) infects a wide range of hosts and human-to-swine spillover events are frequently reported. However, only a few of these human viruses have become established in pigs and the host barriers and molecular mechanisms driving adaptation to the swine host remain poorly understood. We previously found that infection of pigs with a 2:6 reassortant virus (hVIC/11) containing the hemagglutinin (HA) and neuraminidase (NA) gene segments from the human strain A/Victoria/361/2011 (H3N2) and internal gene segments of an endemic swine strain (sOH/04) resulted in a fixed amino acid substitution in the HA (A138S, mature H3 HA numbering). In silico analysis revealed that S138 became predominant among swine H3N2 virus sequences deposited in public databases, while 138A predominates in human isolates. To understand the role of the HA A138S substitution in the adaptation of a human-origin FLUAV HA to swine, we infected pigs with the hVIC/11A138S mutant and analyzed pathogenesis and transmission compared to hVIC/11 and sOH/04. Our results showed that the hVIC/11A138S virus had an intermediary pathogenesis between hVIC/11 and sOH/04. The hVIC/11A138S infected the upper respiratory tract, right caudal, and both cranial lobes while hVIC/11 was only detected in nose and trachea samples. Viruses induced a distinct expression pattern of various pro-inflammatory cytokines such as IL-8, TNF-α, and IFN-ß. Flow cytometric analysis of lung samples revealed a significant reduction of porcine alveolar macrophages (PAMs) in hVIC/11A138S-infected pigs compared to hVIC/11 while a MHCIIlowCD163neg population was increased. The hVIC/11A138S showed a higher affinity for PAMs than hVIC/11, noted as an increase of infected PAMs in bronchoalveolar lavage fluid (BALF), and showed no differences in the percentage of HA-positive PAMs compared to sOH/04. This increased infection of PAMs led to an increase of granulocyte-monocyte colony-stimulating factor (GM-CSF) stimulation but a reduced expression of peroxisome proliferator-activated receptor gamma (PPARγ) in the sOH/04-infected group. Analysis using the PAM cell line 3D4/21 revealed that the A138S substitution improved replication and apoptosis induction in this cell type compared to hVIC/11 but at lower levels than sOH/04. Overall, our study indicates that adaptation of human viruses to the swine host involves an increased affinity for the lower respiratory tract and alveolar macrophages.
Asunto(s)
Subtipo H3N2 del Virus de la Influenza A , Virus de la Influenza A , Humanos , Animales , Porcinos , Subtipo H3N2 del Virus de la Influenza A/genética , Macrófagos Alveolares , Aminoácidos , Hemaglutininas , NarizRESUMEN
The growing maturity of integrated photonic technology makes it possible to build increasingly large and complex photonic circuits on the surface of a chip. Today, most of these circuits are designed for a specific application, but the increase in complexity has introduced a generation of photonic circuits that can be programmed using software for a wide variety of functions through a mesh of on-chip waveguides, tunable beam couplers and optical phase shifters. Here we discuss the state of this emerging technology, including recent developments in photonic building blocks and circuit architectures, as well as electronic control and programming strategies. We cover possible applications in linear matrix operations, quantum information processing and microwave photonics, and examine how these generic chips can accelerate the development of future photonic circuits by providing a higher-level platform for prototyping novel optical functionalities without the need for custom chip fabrication.
RESUMEN
The hemagglutinin (HA) stem region is a major target of universal influenza vaccine efforts owing to the presence of highly conserved epitopes across multiple influenza A virus (IAV) strains and subtypes. To explore the potential impact of vaccine-induced immunity targeting the HA stem, we examined the fitness effects of viral escape from stem-binding broadly neutralizing antibodies (stem-bnAbs). Recombinant viruses containing each individual antibody escape substitution showed diminished replication compared to wild-type virus, indicating that stem-bnAb escape incurred fitness costs. A second-site mutation in the HA head domain (N129D; H1 numbering) reduced the fitness effects observed in primary cell cultures and likely enabled the selection of escape mutations. Functionally, this putative permissive mutation increased HA avidity for its receptor. These results suggest a mechanism of epistasis in IAV, wherein modulating the efficiency of attachment eases evolutionary constraints imposed by the requirement for membrane fusion. Taken together, the data indicate that viral escape from stem-bnAbs is costly but highlights the potential for epistatic interactions to enable evolution within the functionally constrained HA stem domain.
Asunto(s)
Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Anticuerpos ampliamente neutralizantes/genética , Epistasis Genética , Glicoproteínas Hemaglutininas del Virus de la Influenza , Vacunas contra la Influenza/genética , Hemaglutininas , Gripe Humana/genética , Gripe Humana/prevención & controlRESUMEN
Anticancer systemic therapy comprises a complex and growing group of drugs. Some of the new agents with novel mechanisms of action that have appeared are difficult to fit in the groups of classical chemotherapy, hormones, tyrosine-kinase inhibitors, and monoclonal antibodies. We propose a classification based on two levels of information: the site of action and the mechanism of action. Regarding the former, drugs can exert their action in the tumor cell, the tumor vasculature, the immune system, or the endocrine system. The mechanism of action refers to the molecular target.
RESUMEN
BACKGROUND & AIMS: WNT signaling is central to spatial tissue arrangement and regulating stem cell activity, and it represents the hallmark of gastrointestinal cancers. Although its role in driving intestinal tumors is well characterized, WNT's role in gastric tumorigenesis remains elusive. METHODS: We have developed mouse models to control the specific expression of an oncogenic form of ß-catenin (CTNNB1) in combination with MYC activation in Lgr5+ cells of the gastric antrum. We used multiomics approaches applied in vivo and in organoid models to characterize their cooperation in driving gastric tumorigenesis. RESULTS: We report that constitutive ß-catenin stabilization in the stomach has negligible oncogenic effects and requires MYC activation to induce gastric tumor formation. Although physiologically low MYC levels in gastric glands limit ß-catenin transcriptional activity, increased MYC expression unleashes the WNT oncogenic transcriptional program, promoting ß-catenin enhancer invasion without a direct transcriptional cooperation. MYC activation induces a metabolic rewiring that suppresses lysosomal biogenesis through mTOR and ERK activation and MiT/TFE inhibition. This prevents EPCAM degradation by macropinocytosis, promoting ß-catenin chromatin accumulation and activation of WNT oncogenic transcription. CONCLUSION: Our results uncovered a new signaling framework with important implications for the control of gastric epithelial architecture and WNT-dependent oncogenic transformation.
Asunto(s)
Molécula de Adhesión Celular Epitelial , Lisosomas , Proteínas Proto-Oncogénicas c-myc , Neoplasias Gástricas , Vía de Señalización Wnt , beta Catenina , Animales , Femenino , Humanos , Masculino , Ratones , beta Catenina/metabolismo , beta Catenina/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Molécula de Adhesión Celular Epitelial/metabolismo , Molécula de Adhesión Celular Epitelial/genética , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patología , Regulación Neoplásica de la Expresión Génica , Lisosomas/metabolismo , Ratones Transgénicos , Organoides/metabolismo , Estabilidad Proteica , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Serina-Treonina Quinasas TOR/metabolismo , Transcripción GenéticaRESUMEN
As an Argentine scientist, the defunding of CONICET and INTA feels like a blow to progress and our future. Despite free education, these cuts force talented researchers to seek opportunities abroad. Argentina's history of scientific achievement, from Nobel Prizes to COVID-19 vaccines, is at risk. Defunding science weakens our ability to solve problems and compete globally.
Asunto(s)
Investigación Biomédica , Humanos , Argentina , Investigación Biomédica/economía , Investigación Biomédica/educación , Ciencia/economía , Ciencia/educación , Fuga de CerebrosRESUMEN
The increased detection of H3 C-IVA (1990.4.a) clade influenza A viruses (IAVs) in US swine in 2019 was associated with a reassortment event to acquire an H1N1pdm09 lineage nucleoprotein (pdmNP) gene, replacing a TRIG lineage NP (trigNP). We hypothesized that acquiring the pdmNP conferred a selective advantage over prior circulating H3 viruses with a trigNP. To investigate the role of NP reassortment in transmission, we identified two contemporary 1990.4.a representative strains (NC/19 and MN/18) with different evolutionary origins of the NP gene. A reverse genetics system was used to generate wild-type (wt) strains and swap the pdm and TRIG lineage NP genes, generating four viruses: wtNC/19-pdmNP, NC/19-trigNP, wtMN/18-trigNP, and MN/18-pdmNP. The pathogenicity and transmission of the four viruses were compared in pigs. All four viruses infected 10 primary pigs and transmitted to five indirect contact pigs per group. Pigs infected via contact with MN/18-pdmNP shed virus 2 days earlier than pigs infected with wtMN/18-trigNP. The inverse did not occur for wtNC/19-pdmNP and NC/19-trigNP. This suggests that pdmNP reassortment resulted in a combination of genes that improved transmission efficiency when paired with the 1990.4.a hemagglutinin (HA). This is likely a multigenic trait, as replacing the trigNP gene did not diminish the transmission of a wild-type IAV in swine. This study demonstrates how reassortment and evolutionary change of internal genes can result in more transmissible viruses that influence HA clade detection frequency. Thus, rapidly identifying novel reassortants paired with dominant hemagglutinin/neuraminidase may improve the prediction of strains to include in vaccines.IMPORTANCEInfluenza A viruses (IAVs) are composed of eight non-continuous gene segments that can reassort during coinfection of a host, creating new combinations. Some gene combinations may convey a selective advantage and be paired together preferentially. A reassortment event was detected in swine in the United States that involved the exchange of two lineages of nucleoprotein (NP) genes (trigNP to pdmNP) that became a predominant genotype detected in surveillance. Using a transmission study, we demonstrated that exchanging the trigNP for a pdmNP caused the virus to shed from the nose at higher levels and transmit to other pigs more rapidly. Replacing a pdmNP with a trigNP did not hinder transmission, suggesting that transmission efficiency depends on interactions between multiple genes. This demonstrates how reassortment alters IAV transmission and that reassortment events can provide an explanation for why genetically related viruses with different internal gene combinations experience rapid fluxes in detection frequency.
Asunto(s)
Virus de la Influenza A , Proteínas de la Nucleocápside , Infecciones por Orthomyxoviridae , Enfermedades de los Porcinos , Animales , Hemaglutininas , Virus de la Influenza A/clasificación , Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/veterinaria , Infecciones por Orthomyxoviridae/virología , Virus Reordenados/genética , Porcinos , Estados Unidos , Proteínas de la Nucleocápside/metabolismoRESUMEN
Highly pathogenic avian influenza A(H5N1) detected in dairy cows raises concerns about milk safety. The effects of pasteurization-like temperatures on influenza viruses in retail and unpasteurized milk revealed virus resilience under certain conditions. Although pasteurization contributes to viral inactivation, influenza A virus, regardless of strain, displayed remarkable stability in pasteurized milk.
Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Leche , Pasteurización , Inactivación de Virus , Animales , Leche/virología , Bovinos , Calor , Humanos , FemeninoRESUMEN
BACKGROUND: The Colorectal Cancer Subtyping Consortium established four Consensus Molecular Subtypes (CMS) in colorectal cancer: CMS1 (microsatellite-instability [MSI], Immune), CMS2 (Canonical, epithelial), CMS3 (Metabolic), and CMS4 (Mesenchymal). However, only MSI tumour patients have seen a change in their disease management in clinical practice. This study aims to characterise the proteome of colon cancer CMS and broaden CMS's clinical utility. METHODS: One-hundred fifty-eight paraffin samples from stage II-III colon cancer patients treated with adjuvant chemotherapy were analysed through DIA-based mass-spectrometry proteomics. RESULTS: CMS1 exhibited overexpression of immune-related proteins, specifically related to neutrophils, phagocytosis, antimicrobial response, and a glycolytic profile. These findings suggested potential therapeutic strategies involving immunotherapy and glycolytic inhibitors. CMS3 showed overexpression of metabolic proteins. CMS2 displayed a heterogeneous protein profile. Notably, two proteomics subtypes within CMS2, with different protein characteristics and prognoses, were identified. CMS4 emerged as the most distinct group, featuring overexpression of proteins related to angiogenesis, extracellular matrix, focal adhesion, and complement activation. CMS4 showed a high metastatic profile and suggested possible chemoresistance that may explain its worse prognosis. CONCLUSIONS: DIA proteomics revealed new features for each colon cancer CMS subtype. These findings provide valuable insights into potential therapeutic targets for colorectal cancer subtypes in the future.
Asunto(s)
Neoplasias del Colon , Proteómica , Humanos , Proteómica/métodos , Neoplasias del Colon/patología , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Femenino , Masculino , Pronóstico , Anciano , Persona de Mediana Edad , Inestabilidad de Microsatélites , Quimioterapia Adyuvante , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genéticaRESUMEN
BACKGROUND & AIMS: Ulcerative colitis (UC) is characterized by severe inflammation and destruction of the intestinal epithelium, and is associated with specific risk single nucleotide polymorphisms in HLA class II. Given the recently discovered interactions between subsets of HLA-DP molecules and the activating natural killer (NK) cell receptor NKp44, genetic associations of UC and HLA-DP haplotypes and their functional implications were investigated. METHODS: HLA-DP haplotype and UC risk association analyses were performed (UC: n = 13,927; control: n = 26,764). Expression levels of HLA-DP on intestinal epithelial cells (IECs) in individuals with and without UC were quantified. Human intestinal 3-dimensional (3D) organoid cocultures with human NK cells were used to determine functional consequences of interactions between HLA-DP and NKp44. RESULTS: These studies identified HLA-DPA1∗01:03-DPB1∗04:01 (HLA-DP401) as a risk haplotype and HLA-DPA1∗01:03-DPB1∗03:01 (HLA-DP301) as a protective haplotype for UC in European populations. HLA-DP expression was significantly higher on IECs of individuals with UC compared with controls. IECs in human intestinal 3D organoids derived from HLA-DP401pos individuals showed significantly stronger binding of NKp44 compared with HLA-DP301pos IECs. HLA-DP401pos IECs in organoids triggered increased degranulation and tumor necrosis factor production by NKp44+ NK cells in cocultures, resulting in enhanced epithelial cell death compared with HLA-DP301pos organoids. Blocking of HLA-DP401-NKp44 interactions (anti-NKp44) abrogated NK cell activity in cocultures. CONCLUSIONS: We identified an UC risk HLA-DP haplotype that engages NKp44 and activates NKp44+ NK cells, mediating damage to intestinal epithelial cells in an HLA-DP haplotype-dependent manner. The molecular interaction between NKp44 and HLA-DP401 in UC can be targeted by therapeutic interventions to reduce NKp44+ NK cell-mediated destruction of the intestinal epithelium in UC.
Asunto(s)
Colitis Ulcerosa , Antígenos HLA-DP , Humanos , Antígenos HLA-DP/genética , Colitis Ulcerosa/genética , Células Asesinas Naturales , Haplotipos , Células EpitelialesRESUMEN
IMPORTANCE: Determining the relevant amino acids involved in antigenic drift on the surface protein hemagglutinin (HA) is critical to understand influenza virus evolution and efficient assessment of vaccine strains relative to current circulating strains. We used antigenic cartography to generate an antigenic map of the H9 hemagglutinin (HA) using sera produced in one of the most relevant minor poultry species, Japanese quail. Key antigenic positions were identified and tested to confirm their impact on the antigenic profile. This work provides a better understanding of the antigenic diversity of the H9 HA as it relates to reactivity to quail sera and will facilitate a rational approach for selecting more efficacious vaccines against poultry-origin H9 influenza viruses in minor poultry species.
Asunto(s)
Deriva y Cambio Antigénico , Glicoproteínas Hemaglutininas del Virus de la Influenza , Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Animales , Coturnix , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H9N2 del Virus de la Influenza A/genética , Gripe Aviar/virología , Aves de CorralRESUMEN
The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS2) affected the geriatric population. Among research models, Golden Syrian hamsters (GSH) are one of the most representative to study SARS2 pathogenesis and host responses. However, animal studies that recapitulate the effects of SARS2 in the human geriatric population are lacking. To address this gap, we inoculated 14 months old GSH with a prototypic ancestral strain of SARS2 and studied the effects on virus pathogenesis, virus shedding, and respiratory and gastrointestinal microbiome changes. SARS2 infection led to high vRNA loads in the nasal turbinates (NT), lungs, and trachea as well as higher pulmonary lesions scores later in infection. Dysbiosis throughout SARS2 disease progression was observed in the pulmonary microbial dynamics with the enrichment of opportunistic pathogens (Haemophilus, Fusobacterium, Streptococcus, Campylobacter, and Johnsonella) and microbes associated with inflammation (Prevotella). Changes in the gut microbial community also reflected an increase in multiple genera previously associated with intestinal inflammation and disease (Helicobacter, Mucispirillum, Streptococcus, unclassified Erysipelotrichaceae, and Spirochaetaceae). Influenza A virus (FLUAV) pre-exposure resulted in slightly more pronounced pathology in the NT and lungs early on (3 dpc), and more notable changes in lungs compared to the gut microbiome dynamics. Similarities among aged GSH and the microbiome in critically ill COVID-19 patients, particularly in the lower respiratory tract, suggest that GSHs are a representative model to investigate microbial changes during SARS2 infection. The relationship between the residential microbiome and other confounding factors, such as SARS2 infection, in a widely used animal model, contributes to a better understanding of the complexities associated with the host responses during viral infections.
Asunto(s)
COVID-19 , Microbioma Gastrointestinal , Cricetinae , Animales , Humanos , Anciano , Lactante , SARS-CoV-2 , Mesocricetus , Disbiosis/patología , Pulmón/patología , Inflamación/patologíaRESUMEN
OBJECTIVE: Given its key homeostatic role affecting mitochondria, ionotropic and metabotropic receptors, and voltage-gated ion channels, sigma-1 receptor (Sig1R) represents an interesting target for epilepsy management. Antiseizure effects of the positive allosteric modulator E1R have already been reported in acute seizure models. Although modulation of serotonergic neurotransmission is considered the main mechanism of action of fenfluramine, its interaction with Sig1R may be of additional relevance. METHODS: To further explore the potential of Sig1R as a target, we assessed the efficacy and tolerability of E1R and fenfluramine in two chronic mouse models, including an amygdala kindling paradigm and the intrahippocampal kainate model. The relative contribution of the interaction with Sig1R was analyzed using combination experiments with the Sig1R antagonist NE-100. RESULTS: Whereas E1R exerted pronounced dose-dependent antiseizure effects at well-tolerated doses in fully kindled mice, only limited effects were observed in response to fenfluramine, without a clear dose dependency. In the intrahippocampal kainate model, E1R failed to influence electrographic seizure activity. In contrast, fenfluramine significantly reduced the frequency of electrographic seizure events and their cumulative duration. Pretreatment with NE-100 reduced the effects of E1R and fenfluramine in the kindling model. Surprisingly, pre-exposure to NE-100 in the intrahippocampal kainate model rather enhanced and prolonged fenfluramine's antiseizure effects. SIGNIFICANCE: In conclusion, the kindling data further support Sig1R as an interesting target for novel antiseizure medications. However, it is necessary to further explore the preclinical profile of E1R in chronic epilepsy models with spontaneous seizures. Despite the rather limited effects in the kindling paradigm, the findings from the intrahippocampal kainate model suggest that it is of interest to further assess a possible broad-spectrum potential of fenfluramine.
Asunto(s)
Modelos Animales de Enfermedad , Epilepsia , Fenfluramina , Excitación Neurológica , Receptores sigma , Receptor Sigma-1 , Animales , Receptores sigma/antagonistas & inhibidores , Receptores sigma/efectos de los fármacos , Ratones , Excitación Neurológica/efectos de los fármacos , Fenfluramina/farmacología , Epilepsia/tratamiento farmacológico , Masculino , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Relación Dosis-Respuesta a Droga , Piperazinas/farmacología , Piperazinas/uso terapéutico , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/fisiopatología , Hipocampo/efectos de los fármacos , Enfermedad Crónica , Ácido Kaínico/farmacología , Ratones Endogámicos C57BLRESUMEN
The patient's perspective is an essential component of understanding the individual experience of suffering in children with palliative needs, but it is a perspective that is often overlooked. The aim of this study was to compare the perception of quality of life (QoL) of children with life-limiting and life-threatening conditions expressed by the children themselves and their parents. Through a cross-sectional study, the responses of 44 parent-child dyads were obtained and the analysis was performed with the statistics based on Student's t distribution and non-parametric tests. Children value QoL more positively (mean = 6.95, SD = 1.85) than their parents (mean = 5.39, SD = 2.43). This difference exists even if we consider sociodemographic and disease variables. The presence of exacerbated symptoms is the situation in which both parents (mean = 3.70; SD = 1.95) and children (mean = 5.60; SD = 1.17) evaluate QoL more negatively. CONCLUSIONS: Children have a more optimistic view than their parents. When the child is the one who reports a lower QoL score than their parent, the child should be carefully monitored. The voice of the child and that of the family members can be collected to create a "family voice" and can be complementary. WHAT IS KNOWN: ⢠Children with life-limiting conditions experience multiple and changing symptoms that affect their QoL. ⢠The child's perspective is often overlooked. WHAT IS NEW: ⢠Children value QoL more positively than their parents do, even if we control for sociodemographic variables and the disease itself. ⢠When the child is the one who reports a lower QoL score than their parent, the child should be carefully monitored.
Asunto(s)
Cuidados Paliativos , Calidad de Vida , Niño , Humanos , Estudios Transversales , Encuestas y Cuestionarios , PadresRESUMEN
The understanding of the causes of temporomandibular joint pain and dysfunction has evolved over 50 years. Historically, the term internal derangement has been used to describe the abnormal relationship between the articular disc, condyle, and glenoid fossa, which was thought to correlate with patient symptoms. It is now known that the pathophysiology of intra-articular pain and dysfunction (IPD) involves synovitis, capsular impingement, symptomatic disc displacement, or a combination of these. Symptomatic disc displacement should only be considered to be a potential source of IPD after synovitis and capsular impingement have been treated. This philosophy provides the opportunity for most patients with IPD to be initially treated nonsurgically or with minimally invasive procedures such as arthrocentesis or arthroscopy.
Asunto(s)
Artroscopía , Trastornos de la Articulación Temporomandibular , Humanos , Trastornos de la Articulación Temporomandibular/terapia , Trastornos de la Articulación Temporomandibular/fisiopatología , Trastornos de la Articulación Temporomandibular/cirugía , Artroscopía/métodos , Dolor Facial/terapia , Artralgia/terapia , Artralgia/etiología , Artrocentesis/métodosRESUMEN
PURPOSE: Determine if the gene expression profiles of ovarian support cells (OSCs) and cumulus-free oocytes are bidirectionally influenced by co-culture during in vitro maturation (IVM). METHODS: Fertility patients aged 25 to 45 years old undergoing conventional ovarian stimulation donated denuded immature oocytes for research. Oocytes were randomly allocated to either OSC-IVM culture (intervention) or Media-IVM culture (control) for 24-28 h. The OSC-IVM culture condition was composed of 100,000 OSCs in suspension culture with human chorionic gonadotropin (hCG), recombinant follicle stimulating hormone (rFSH), androstenedione, and doxycycline supplementation. The Media-IVM control lacked OSCs and contained the same supplementation. A limited set of in vivo matured MII oocytes were donated for comparative evaluation. Endpoints consisted of MII formation rate, morphological and spindle quality assessment, and gene expression analysis compared to in vitro and in vivo controls. RESULTS: OSC-IVM resulted in a statistically significant improvement in MII formation rate compared to the Media-IVM control, with no apparent effect on morphology or spindle assembly. OSC-IVM MII oocytes displayed a closer transcriptomic maturity signature to IVF-MII controls than Media-IVM control MII oocytes. The gene expression profile of OSCs was modulated in the presence of oocytes, displaying culture- and time-dependent differential gene expression during IVM. CONCLUSION: The OSC-IVM platform is a novel tool for rescue maturation of human oocytes, yielding oocytes with improved nuclear maturation and a closer transcriptomic resemblance to in vivo matured oocytes, indicating a potential enhancement in oocyte cytoplasmic maturation. These improvements on oocyte quality after OSC-IVM are possibly occurring through bidirectional crosstalk of cumulus-free oocytes and ovarian support cells.