Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
2.
J Physiol ; 592(19): 4277-95, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25085886

RESUMEN

Diurnal release of the orexin neuropeptides orexin-A (Ox-A, hypocretin-1) and orexin-B (Ox-B, hypocretin-2) stabilises arousal, regulates energy homeostasis and contributes to cognition and learning. However, whether cellular correlates of brain plasticity are regulated through orexins, and whether they do so in a time-of-day-dependent manner, has never been assessed. Immunohistochemically we found sparse but widespread innervation of hippocampal subfields through Ox-A- and Ox-B-containing fibres in young adult rats. The actions of Ox-A were studied on NMDA receptor (NMDAR)-mediated excitatory synaptic transmission in acute hippocampal slices prepared around the trough (Zeitgeber time (ZT) 4-8, corresponding to 4-8 h into the resting phase) and peak (ZT 23) of intracerebroventricular orexin levels. At ZT 4-8, exogenous Ox-A (100 nm in bath) inhibited NMDA receptor-mediated excitatory postsynaptic currents (NMDA-EPSCs) at mossy fibre (MF)-CA3 (to 55.6 ± 6.8% of control, P = 0.0003) and at Schaffer collateral-CA1 synapses (70.8 ± 6.3%, P = 0.013), whereas it remained ineffective at non-MF excitatory synapses in CA3. Ox-A actions were mediated postsynaptically and blocked by the orexin-2 receptor (OX2R) antagonist JNJ10397049 (1 µm), but not by orexin-1 receptor inhibition (SB334867, 1 µm) or by adrenergic and cholinergic antagonists. At ZT 23, inhibitory effects of exogenous Ox-A were absent (97.6 ± 2.9%, P = 0.42), but reinstated (87.2 ± 3.3%, P = 0.002) when endogenous orexin signalling was attenuated for 5 h through i.p. injections of almorexant (100 mg kg(-1)), a dual orexin receptor antagonist. In conclusion, endogenous orexins modulate hippocampal NMDAR function in a time-of-day-dependent manner, suggesting that they may influence cellular plasticity and consequent variations in memory performance across the sleep-wake cycle.


Asunto(s)
Potenciales Postsinápticos Excitadores/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/farmacología , Fibras Musgosas del Hipocampo/efectos de los fármacos , Neuropéptidos/farmacología , Receptores de Orexina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/efectos de los fármacos , Animales , Región CA3 Hipocampal/efectos de los fármacos , Región CA3 Hipocampal/metabolismo , Fibras Musgosas del Hipocampo/metabolismo , Inhibición Neural/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Orexinas , Ratas , Ratas Sprague-Dawley , Sinapsis/metabolismo
3.
J Exp Clin Cancer Res ; 43(1): 15, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38195652

RESUMEN

BACKGROUND: New drugs to tackle the next pathway or mutation fueling cancer are constantly proposed, but 97% of them are doomed to fail in clinical trials, largely because they are identified by cellular or in silico screens that cannot predict their in vivo effect. METHODS: We screened an Adeno-Associated Vector secretome library (> 1000 clones) directly in vivo in a mouse model of cancer and validated the therapeutic effect of the first hit, EMID2, in both orthotopic and genetic models of lung and pancreatic cancer. RESULTS: EMID2 overexpression inhibited both tumor growth and metastatic dissemination, consistent with prolonged survival of patients with high levels of EMID2 expression in the most aggressive human cancers. Mechanistically, EMID2 inhibited TGFß maturation and activation of cancer-associated fibroblasts, resulting in more elastic ECM and reduced levels of YAP in the nuclei of cancer cells. CONCLUSION: This is the first in vivo screening, precisely designed to identify proteins able to interfere with cancer cell invasiveness. EMID2 was selected as the most potent protein, in line with the emerging relevance of the tumor extracellular matrix in controlling cancer cell invasiveness and dissemination, which kills most of cancer patients.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Núcleo Celular , Modelos Animales de Enfermedad , Detección Precoz del Cáncer , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Colágeno/metabolismo
4.
Antioxidants (Basel) ; 12(3)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36978936

RESUMEN

The extracellular milieu is a rich source of different stimuli and stressors. Some of them depend on the chemical-physical features of the matrix, while others may come from the 'outer' environment, as in the case of mechanical loading applied on the bones. In addition to these forces, a plethora of chemical signals drives cell physiology and fate, possibly leading to dysfunctions when the homeostasis is disrupted. This variety of stimuli triggers different responses among the tissues: bones represent a particular milieu in which a fragile balance between mechanical and metabolic demands should be tuned and maintained by the concerted activity of cell biomolecules located at the interface between external and internal environments. Plasma membrane ion channels can be viewed as multifunctional protein machines that act as rapid and selective dual-nature hubs, sensors, and transducers. Here we focus on some multisensory ion channels (belonging to Piezo, TRP, ASIC/EnaC, P2XR, Connexin, and Pannexin families) actually or potentially playing a significant role in bone adaptation to three main stressors, mechanical forces, oxidative stress, and acidosis, through their effects on bone cells including mesenchymal stem cells, osteoblasts, osteoclasts, and osteocytes. Ion channel-mediated bone remodeling occurs in physiological processes, aging, and human diseases such as osteoporosis, cancer, and traumatic events.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA