Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Mol Ther ; 31(6): 1636-1646, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-36694464

RESUMEN

Trans-amplifying RNA (taRNA) is a split-vector derivative of self-amplifying RNA (saRNA) and a promising vaccine platform. taRNA combines a non-replicating mRNA encoding an alphaviral replicase and a transreplicon (TR) RNA coding for the antigen. Upon translation, the replicase amplifies the antigen-coding TR, thereby requiring minimal amounts of TR for immunization. TR amplification by the replicase follows a complex mechanism orchestrated by genomic and subgenomic promoters (SGPs) and generates genomic and subgenomic amplicons whereby only the latter are translated into therapeutic proteins. This complexity merits simplification to improve the platform. Here, we eliminated the SGP and redesigned the 5' untranslated region to shorten the TR (STR), thereby enabling translation of the remaining genomic amplicon. We then applied a directed evolution approach to select for faster replicating STRs. The resulting evolved STR (eSTR) had acquired A-rich 5' extensions, which improved taRNA expression thanks to accelerated replication. Consequently, we reduced the minimal required TR amount by more than 10-fold without losing taRNA expression in vitro. Accordingly, eSTR-immunized mice developed greater antibody titers to taRNA-encoded influenza HA than TR-immunized mice. In summary, this work points the way for further optimization of taRNA by combining rational design and directed evolution.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Animales , Ratones , Humanos , ARN Viral/genética , ARN Mensajero/genética , Vacunación
2.
Mol Ther ; 28(1): 119-128, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31624015

RESUMEN

Here, we present a potent RNA vaccine approach based on a novel bipartite vector system using trans-amplifying RNA (taRNA). The vector cassette encoding the vaccine antigen originates from an alphaviral self-amplifying RNA (saRNA), from which the replicase was deleted to form a transreplicon. Replicase activity is provided in trans by a second molecule, either by a standard saRNA or an optimized non-replicating mRNA (nrRNA). The latter delivered 10- to 100-fold higher transreplicon expression than the former. Moreover, expression driven by the nrRNA-encoded replicase in the taRNA system was as efficient as in a conventional monopartite saRNA system. We show that the superiority of nrRNA- over saRNA-encoded replicase to drive expression of the transreplicon is most likely attributable to its higher translational efficiency and lack of interference with cellular translation. Testing the novel taRNA system in mice, we observed that doses of influenza hemagglutinin antigen-encoding RNA as low as 50 ng were sufficient to induce neutralizing antibodies and mount a protective immune response against live virus challenge. These findings, together with a favorable safety profile, a simpler production process, and the universal applicability associated with this bipartite vector system, warrant further exploration of taRNA.


Asunto(s)
Inmunogenicidad Vacunal , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Gripe Humana/metabolismo , Infecciones por Orthomyxoviridae/prevención & control , ARN Viral/genética , Virus de los Bosques Semliki/genética , Vacunación , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Cricetinae , Perros , Femenino , Vectores Genéticos , Células HEK293 , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Vacunas contra la Influenza/inmunología , Gripe Humana/virología , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/virología , Proteinas del Complejo de Replicasa Viral/genética
5.
Mol Ther ; 26(2): 446-455, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29275847

RESUMEN

New vaccine platforms are needed to address the time gap between pathogen emergence and vaccine licensure. RNA-based vaccines are an attractive candidate for this role: they are safe, are produced cell free, and can be rapidly generated in response to pathogen emergence. Two RNA vaccine platforms are available: synthetic mRNA molecules encoding only the antigen of interest and self-amplifying RNA (sa-RNA). sa-RNA is virally derived and encodes both the antigen of interest and proteins enabling RNA vaccine replication. Both platforms have been shown to induce an immune response, but it is not clear which approach is optimal. In the current studies, we compared synthetic mRNA and sa-RNA expressing influenza virus hemagglutinin. Both platforms were protective, but equivalent levels of protection were achieved using 1.25 µg sa-RNA compared to 80 µg mRNA (64-fold less material). Having determined that sa-RNA was more effective than mRNA, we tested hemagglutinin from three strains of influenza H1N1, H3N2 (X31), and B (Massachusetts) as sa-RNA vaccines, and all protected against challenge infection. When sa-RNA was combined in a trivalent formulation, it protected against sequential H1N1 and H3N2 challenges. From this we conclude that sa-RNA is a promising platform for vaccines against viral diseases.


Asunto(s)
Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , ARN Viral/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Inmunización , Inmunización Secundaria , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Virus de la Influenza A/genética , Vacunas contra la Influenza/genética , Ratones , ARN Mensajero/genética , ARN Mensajero/inmunología , ARN Viral/genética , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
6.
J Virol ; 90(22): 10193-10208, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27581978

RESUMEN

Lentiviruses have evolved the Vif protein to counteract APOBEC3 (A3) restriction factors by targeting them for proteasomal degradation. Previous studies have identified important residues in the interface of human immunodeficiency virus type 1 (HIV-1) Vif and human APOBEC3C (hA3C) or human APOBEC3F (hA3F). However, the interaction between primate A3C proteins and HIV-1 Vif or natural HIV-1 Vif variants is still poorly understood. Here, we report that HIV-1 Vif is inactive against A3Cs of rhesus macaques (rhA3C), sooty mangabey monkeys (smmA3C), and African green monkeys (agmA3C), while HIV-2, African green monkey simian immunodeficiency virus (SIVagm), and SIVmac Vif proteins efficiently mediate the depletion of all tested A3Cs. We identified that residues N/H130 and Q133 in rhA3C and smmA3C are determinants for this HIV-1 Vif-triggered counteraction. We also found that the HIV-1 Vif interaction sites in helix 4 of hA3C and hA3F differ. Vif alleles from diverse HIV-1 subtypes were tested for degradation activities related to hA3C. The subtype F-1 Vif was identified to be inactive for degradation of hA3C and hA3F. The residues that determined F-1 Vif inactivity in the degradation of A3C/A3F were located in the C-terminal region (K167 and D182). Structural analysis of F-1 Vif revealed that impairing the internal salt bridge of E171-K167 restored reduction capacities to A3C/A3F. Furthermore, we found that D101 could also form an internal interaction with K167. Replacing D101 with glycine and R167 with lysine in NL4-3 Vif impaired its counteractivity to A3F and A3C. This finding indicates that internal interactions outside the A3 binding region in HIV-1 Vif influence the capacity to induce degradation of A3C/A3F. IMPORTANCE: The APOBEC3 restriction factors can serve as potential barriers to lentiviral cross-species transmissions. Vif proteins from lentiviruses counteract APOBEC3 by proteasomal degradation. In this study, we found that monkey-derived A3C, rhA3C and smmA3C, were resistant to HIV-1 Vif. This was determined by A3C residues N/H130 and Q133. However, HIV-2, SIVagm, and SIVmac Vif proteins were found to be able to mediate the depletion of all tested primate A3C proteins. In addition, we identified a natural HIV-1 Vif (F-1 Vif) that was inactive in the degradation of hA3C/hA3F. Here, we provide for the first time a model that explains how an internal salt bridge of E171-K167-D101 influences Vif-mediated degradation of hA3C/hA3F. This finding provides a novel way to develop HIV-1 inhibitors by targeting the internal interactions of the Vif protein.


Asunto(s)
Citidina Desaminasa/metabolismo , Productos del Gen vif/metabolismo , VIH-1/metabolismo , Virus de la Inmunodeficiencia de los Simios/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Animales , Sitios de Unión , Línea Celular , Células HEK293 , Infecciones por VIH/virología , VIH-2/metabolismo , Humanos , Lentivirus/metabolismo , Macaca mulatta , Unión Proteica/fisiología
7.
Proc Natl Acad Sci U S A ; 109(37): 14906-11, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-22927413

RESUMEN

Yeast prions constitute a "protein-only" mechanism of inheritance that is widely deployed by wild yeast to create diverse phenotypes. One of the best-characterized prions, [PSI(+)], is governed by a conformational change in the prion domain of Sup35, a translation-termination factor. When this domain switches from its normal soluble form to an insoluble amyloid, the ensuing change in protein synthesis creates new traits. Two factors make these traits heritable: (i) the amyloid conformation is self-templating; and (ii) the protein-remodeling factor heat-shock protein (Hsp)104 (acting together with Hsp70 chaperones) partitions the template to daughter cells with high fidelity. Prions formed by several other yeast proteins create their own phenotypes but share the same mechanistic basis of inheritance. Except for the amyloid fibril itself, the cellular architecture underlying these protein-based elements of inheritance is unknown. To study the 3D arrangement of prion assemblies in their cellular context, we examined yeast [PSI(+)] prions in the native, hydrated state in situ, taking advantage of recently developed methods for cryosectioning of vitrified cells. Cryo-electron tomography of the vitrified sections revealed the prion assemblies as aligned bundles of regularly spaced fibrils in the cytoplasm with no bounding structures. Although the fibers were widely spaced, other cellular complexes, such as ribosomes, were excluded from the fibril arrays. Subtomogram image averaging, made possible by the organized nature of the assemblies, uncovered the presence of an additional array of densities between the fibers. We suggest these structures constitute a self-organizing mechanism that coordinates fiber deposition and the regulation of prion inheritance.


Asunto(s)
Patrón de Herencia/genética , Modelos Moleculares , Priones/química , Conformación Proteica , Levaduras/genética , Microscopía por Crioelectrón , Procesamiento de Imagen Asistido por Computador , Microscopía Fluorescente
8.
J Struct Biol ; 186(2): 205-13, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24698954

RESUMEN

Correlative microscopy incorporates the specificity of fluorescent protein labeling into high-resolution electron micrographs. Several approaches exist for correlative microscopy, most of which have used the green fluorescent protein (GFP) as the label for light microscopy. Here we use chemical tagging and synthetic fluorophores instead, in order to achieve protein-specific labeling, and to perform multicolor imaging. We show that synthetic fluorophores preserve their post-embedding fluorescence in the presence of uranyl acetate. Post-embedding fluorescence is of such quality that the specimen can be prepared with identical protocols for scanning electron microscopy (SEM) and transmission electron microscopy (TEM); this is particularly valuable when singular or otherwise difficult samples are examined. We show that synthetic fluorophores give bright, well-resolved signals in super-resolution light microscopy, enabling us to superimpose light microscopic images with a precision of up to 25 nm in the x-y plane on electron micrographs. To exemplify the preservation quality of our new method we visualize the molecular arrangement of cadherins in adherens junctions of mouse epithelial cells.


Asunto(s)
Colorantes Fluorescentes , Microscopía Electrónica/métodos , Coloración y Etiquetado/métodos , Uniones Adherentes/ultraestructura , Animales , Cadherinas/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Ratones , Compuestos Organometálicos
9.
J Virol ; 87(16): 9030-40, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23760237

RESUMEN

Cellular cytidine deaminases from the APOBEC3 family are potent restriction factors that are able to block the replication of retroviruses. Consequently, retroviruses have evolved a variety of different mechanisms to counteract inhibition by APOBEC3 proteins. Lentiviruses such as human immunodeficiency virus (HIV) express Vif, which interferes with APOBEC3 proteins by targeting these restriction factors for proteasomal degradation, hence blocking their ability to access the reverse transcriptase complex in the virions. Other retroviruses use less-well-characterized mechanisms to escape the APOBEC3-mediated cellular defense. Here we show that the prototype foamy virus Bet protein can protect foamy viruses and an unrelated simian immunodeficiency virus against human APOBEC3G (A3G). In our system, Bet binds to A3G and prevents its encapsidation without inducing its degradation. Bet failed to coimmunoprecipitate with A3G mutants unable to form homodimers and dramatically reduced the recovery of A3G proteins from soluble cytoplasmic cell fractions. The Bet-A3G interaction is probably a direct binding interaction and seems to be independent of RNA. Together, these data suggest a novel model whereby Bet uses two possibly complementary mechanisms to counteract A3G: (i) Bet prevents encapsidation of A3G by blocking A3G dimerization, and (ii) Bet sequesters A3G in immobile complexes, impairing its ability to interact with nascent virions.


Asunto(s)
Citidina Desaminasa/antagonistas & inhibidores , Interacciones Huésped-Patógeno , Multimerización de Proteína , Proteínas de los Retroviridae/metabolismo , Virus Espumoso de los Simios/inmunología , Factores de Virulencia/metabolismo , Desaminasa APOBEC-3G , Línea Celular , Citidina Desaminasa/química , Citidina Desaminasa/metabolismo , Humanos , Solubilidad
10.
Proc Natl Acad Sci U S A ; 106(29): 12079-84, 2009 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-19581596

RESUMEN

Human APOBEC3 (A3) proteins form part of the intrinsic immunity to retroviruses. Carrying 1 or 2 copies of a cytidine deaminase motif, A3s act by deamination of retroviral genomes during reverse transcription. HIV-1 overcomes this inhibition by the Vif protein, which prevents incorporation of A3 into virions. In this study we modeled and probed the structure of APOBEC3C (A3C), a single-domain A3 with strong antilentiviral activity. The 3-dimensional protein model was used to predict the effect of mutations on antiviral activity, which was tested in a Deltavif simian immunodeficiency virus (SIV) reporter virus assay. We found that A3C activity requires protein dimerization for antiviral activity against SIV. Furthermore, by using a structure-based algorithm for automated pocket extraction, we detected a putative substrate binding pocket of A3C distal from the zinc-coordinating deaminase motif. Mutations in this region diminished antiviral activity by excluding A3C from virions. We found evidence that the small 5.8S RNA specifically binds to this locus and mediates incorporation of A3C into virus particles.


Asunto(s)
Cápside/metabolismo , Citosina Desaminasa/química , Citosina Desaminasa/metabolismo , Modelos Moleculares , ARN/metabolismo , Desaminasas APOBEC , Sitios de Unión , Línea Celular , Citidina Desaminasa , Humanos , Immunoblotting , Proteínas Mutantes/metabolismo , Multimerización de Proteína , Procesamiento Proteico-Postraduccional , Estructura Secundaria de Proteína , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo
11.
Mol Ther Nucleic Acids ; 28: 743-754, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35664702

RESUMEN

The arthritogenic alphavirus, chikungunya virus (CHIKV), is now present in almost 100 countries worldwide. Further spread is very likely, which raises public health concerns. CHIKV infections cause fever and arthralgia, which can be debilitating and last for years. Here, we describe a CHIKV vaccine candidate based on trans-amplifying RNA (taRNA). The vaccine candidate consists of two RNAs: a non-replicating mRNA encoding for the CHIKV nonstructural proteins, forming the replicase complex and a trans-replicon (TR) RNA encoding the CHIKV envelope proteins. The TR-RNA can be amplified by the replicase in trans, and small RNA amounts can induce a potent immune response. The TR-RNA was efficiently amplified by the CHIKV replicase in vitro, leading to high protein expression, comparable to that generated by a CHIKV infection. In addition, the taRNA system did not recombine to replication-competent CHIKV. Using a prime-boost schedule, the vaccine candidate induced potent CHIKV-specific humoral and cellular immune responses in vivo in a mouse model. Notably, mice were protected against a high-dose CHIKV challenge infection with two vaccine doses of only 1.5 µg RNA. Therefore, taRNAs are a promising safe and efficient vaccination strategy against CHIKV infections.

12.
Vaccines (Basel) ; 10(9)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36146452

RESUMEN

Alphaviruses such as the human pathogenic chikungunya virus (CHIKV) and Ross River virus (RRV) can cause explosive outbreaks raising public health concerns. However, no vaccine or specific antiviral treatment is yet available. We recently established a CHIKV vaccine candidate based on trans-amplifying RNA (taRNA). This novel system consists of a replicase-encoding mRNA and a trans-replicon (TR) RNA encoding the antigen. The TR-RNA is amplified by the replicase in situ. We were interested in determining whether multiple TR-RNAs can be amplified in parallel and if, thus, a multivalent vaccine candidate can be generated. In vitro, we observed an efficient amplification of two TR-RNAs, encoding for the CHIKV and the RRV envelope proteins, by the replicase, which resulted in a high antigen expression. Vaccination of BALB/c mice with the two TR-RNAs induced CHIKV- and RRV-specific humoral and cellular immune responses. However, antibody titers and neutralization capacity were higher after immunization with a single TR-RNA. In contrast, alphavirus-specific T cell responses were equally potent after the bivalent vaccination. These data show the proof-of-principle that the taRNA system can be used to generate multivalent vaccines; however, further optimizations will be needed for clinical application.

13.
Viruses ; 13(7)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206519

RESUMEN

Alphaviruses have a single-stranded, positive-sense RNA genome that contains two open reading frames encoding either the non-structural or the structural genes. Upon infection, the genomic RNA is translated into the non-structural proteins (nsPs). NsPs are required for viral RNA replication and transcription driven from the subgenomic promoter (sgP). Transfection of an RNA encoding the luciferase gene under the control of the sgP into cells enabled the detection of replication-competent chikungunya virus (CHIKV) or Mayaro virus (MAYV) with high sensitivity as a function of the induced luciferase activity. This assay principle was additionally used to analyze virus-neutralizing antibodies in sera and might be an alternative to standard virus neutralization assays based on virus titration or the use of genetically modified tagged viruses.


Asunto(s)
Alphavirus/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , ARN Viral/genética , Pruebas Serológicas/métodos , Alphavirus/clasificación , Infecciones por Alphavirus/sangre , Infecciones por Alphavirus/diagnóstico , Infecciones por Alphavirus/inmunología , Animales , Línea Celular , Virus Chikungunya/genética , Reacciones Cruzadas , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Luciferasas/genética , Ratones , Ratones Endogámicos BALB C , Sensibilidad y Especificidad , Pruebas Serológicas/normas
14.
Virology ; 554: 17-27, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33333348

RESUMEN

The family of human APOBEC3 (A3) restriction factors is formed by seven different proteins, A3A-D and A3F-H. Among these A3s, A3B harbors strong restriction activity against several retroviruses, such as SIV, and MLV. How lentiviruses and other retroviruses, prevalent in many primate species, counteract A3B is poorly understood. In this study, we found that A3B strongly inhibited SIVmac and HIV-2 infectivity, which was antagonized by their Vif proteins. Both SIVmac and HIV-2 Vifs diminished the protein level of A3B in viral producer cells, and hindered A3B incorporation into viral particles. We observed that HIV-2 Vif binds A3B and induces its degradation by assembly of an A3-Vif-CUL5-ElonginB/C E3-ligase complex. A3B and HIV-2 Vif localize and interact in the nucleus. In addition, we also found that the accessory protein Bet of prototype foamy virus (PFV) significantly antagonized the anti-SIVmac activity of A3B. Like Vif, Bet prevented the incorporation of A3B into viral particles. However, in contrast to Vif Bet did not induce the degradation of A3B. Rather, Bet binds A3B to block formation of high molecular weight A3B complexes and induces A3B cytoplasmic trapping. In summary, these findings indicate that A3B is recognized by diverse retroviruses and counteracted by virus-specific pathways that could be targeted to inhibit A3B mutating activity in cancers.


Asunto(s)
Citidina Desaminasa/antagonistas & inhibidores , Citidina Desaminasa/metabolismo , VIH-2/metabolismo , Antígenos de Histocompatibilidad Menor/metabolismo , Proteínas de los Retroviridae/metabolismo , Spumavirus/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Línea Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Elonguina/genética , Elonguina/metabolismo , Productos del Gen vif/metabolismo , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Virus de la Inmunodeficiencia de los Simios/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Virión/metabolismo
15.
J Virol ; 83(15): 7547-59, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19458006

RESUMEN

The mammalian APOBEC3 (A3) proteins comprise a multigene family of cytidine deaminases that act as potent inhibitors of retroviruses and retrotransposons. The A3 locus on the chromosome 28 of the horse genome contains multiple A3 genes: two copies of A3Z1, five copies of A3Z2, and a single copy of A3Z3, indicating a complex evolution of multiple gene duplications. We have cloned and analyzed for expression the different equine A3 genes and examined as well the subcellular distribution of the corresponding proteins. Additionally, we have tested the functional antiretroviral activity of the equine and of several of the human and nonprimate A3 proteins against the Equine infectious anemia virus (EIAV), the Simian immunodeficiency virus (SIV), and the Adeno-associated virus type 2 (AAV-2). Hematopoietic cells of horses express at least five different A3s: A3Z1b, A3Z2a-Z2b, A3Z2c-Z2d, A3Z2e, and A3Z3, whereas circulating macrophages, the natural target of EIAV, express only part of the A3 repertoire. The five A3Z2 tandem copies arose after three consecutive, recent duplication events in the horse lineage, after the split between Equidae and Carnivora. The duplicated genes show different antiviral activities against different viruses: equine A3Z3 and A3Z2c-Z2d are potent inhibitors of EIAV while equine A3Z1b, A3Z2a-Z2b, A3Z2e showed only weak anti-EIAV activity. Equine A3Z1b and A3Z3 restricted AAV and all equine A3s, except A3Z1b, inhibited SIV. We hypothesize that the horse A3 genes are undergoing a process of subfunctionalization in their respective viral specificities, which might provide the evolutionary advantage for keeping five copies of the original gene.


Asunto(s)
Citidina Desaminasa/metabolismo , Anemia Infecciosa Equina/enzimología , Virus de la Anemia Infecciosa Equina/fisiología , Familia de Multigenes , Desaminasas APOBEC , Animales , Línea Celular , Citidina Desaminasa/genética , Citosina Desaminasa/genética , Citosina Desaminasa/metabolismo , Anemia Infecciosa Equina/virología , Expresión Génica , Células HeLa , Caballos , Humanos , Virus de la Anemia Infecciosa Equina/genética , Datos de Secuencia Molecular
16.
Hum Gene Ther ; 28(12): 1138-1146, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28877647

RESUMEN

Among nucleic acid-based delivery platforms, self-amplifying RNA (saRNA) vectors are of increasing interest for applications such as transient expression of recombinant proteins and vaccination. saRNA is safe and, due to its capability to amplify intracellularly, high protein levels can be produced from even minute amounts of transfected templates. However, it is an obstacle to full exploitation of this platform that saRNA induces a strong innate host immune response. In transfected cells, pattern recognition receptors sense double-stranded RNA intermediates and via activation of protein kinase R (PKR) and interferon signaling initiate host defense measures including a translational shutdown. To reduce pattern recognition receptor stimulation and unleash suppressed saRNA translation, this study co-delivered non-replicating mRNA encoding vaccinia virus immune evasion proteins E3, K3, and B18. It was shown that E3 is far superior to K3 or B18 as a highly potent blocker of PKR activation and of interferon (IFN)-ß upregulation. B18, in contrast, is superior in controlling OAS1, a key IFN-inducible gene involved in viral RNA degradation. By combining all three vaccinia proteins, the study achieved significant suppression of PKR and IFN pathway activation in vitro and enhanced expression of saRNA-encoded genes of interest both in vitro and in vivo. This approach promises to overcome key hurdles of saRNA gene delivery. Its application may improve the bioavailability of the encoded protein, and reduce the effective dose and correspondingly the cost of goods of manufacture in the various fields where saRNA utilization is envisioned.


Asunto(s)
Expresión Génica , Técnicas de Transferencia de Gen , Vectores Genéticos , Evasión Inmune , ARN , Virus Vaccinia/genética , Proteínas Virales , Animales , Línea Celular , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , ARN/genética , ARN/metabolismo , Proteínas Virales/biosíntesis , Proteínas Virales/genética , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
17.
PLoS One ; 11(6): e0155422, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27249646

RESUMEN

APOBEC4 (A4) is a member of the AID/APOBEC family of cytidine deaminases. In this study we found a high mRNA expression of A4 in human testis. In contrast, there were only low levels of A4 mRNA detectable in 293T, HeLa, Jurkat or A3.01 cells. Ectopic expression of A4 in HeLa cells resulted in mostly cytoplasmic localization of the protein. To test whether A4 has antiviral activity similar to that of proteins of the APOBEC3 (A3) subfamily, A4 was co-expressed in 293T cells with wild type HIV-1 and HIV-1 luciferase reporter viruses. We found that A4 did not inhibit the replication of HIV-1 but instead enhanced the production of HIV-1 in a dose-dependent manner and seemed to act on the viral LTR. A4 did not show detectable cytidine deamination activity in vitro and weakly interacted with single-stranded DNA. The presence of A4 in virus producer cells enhanced HIV-1 replication by transiently transfected A4 or stably expressed A4 in HIV-susceptible cells. APOBEC4 was capable of similarly enhancing transcription from a broad spectrum of promoters, regardless of whether they were viral or mammalian. We hypothesize that A4 may have a natural role in modulating host promoters or endogenous LTR promoters.


Asunto(s)
Citidina Desaminasa/fisiología , VIH-1/fisiología , Replicación Viral/fisiología , Línea Celular , Citidina/metabolismo , Citidina Desaminasa/metabolismo , Desaminación , Duplicado del Terminal Largo de VIH , Humanos , Masculino , Regiones Promotoras Genéticas , Testículo/metabolismo
18.
Virology ; 399(1): 87-97, 2010 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-20097401

RESUMEN

SIVagm does not induce disease in its African green monkey (AGM) host. In comparison, the hybrid simian-human immunodeficiency virus SHIV89.6P that carries the HIV env gene induces disease in rhesus macaques more rapidly than the SIVmac parent virus. To address the possibility that this enhancement of disease by HIV env would also occur when present in SIVagm, a full-length SIVagm/89.6Penv chimeric lentivirus genome (termed SHIV-MP) was constructed. SHIV-MP replicated similarly to SIVagm in simian peripheral blood mononuclear cells (PBMCs). In inoculated AGMs, rhesus macaques and pig-tailed (PT) macaques the absolute number of CD4(+) T lymphocytes remained at normal levels. The peak levels of productively infected cells in SHIV-MP-infected monkeys ranged from 10(1) to 10(2) per 10(6) PBMCs, while in SIVagm infected macaques the levels were 10-100-fold higher. The env gene of SHIV89.6P therefore appears insufficient to confer acute pathogenicity to a non-pathogenic primate lentivirus due to poor in vivo replication.


Asunto(s)
Chlorocebus aethiops/virología , Genes env/fisiología , Virus de la Inmunodeficiencia de los Simios/patogenicidad , Animales , Línea Celular , Chlorocebus aethiops/inmunología , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Genes env/genética , VIH-1/fisiología , Humanos , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/genética , Virus de la Inmunodeficiencia de los Simios/fisiología , Carga Viral , Replicación Viral/genética , Replicación Viral/fisiología
19.
J Biol Chem ; 284(9): 5819-26, 2009 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-19074429

RESUMEN

The APOBEC3 cytidine deaminases are part of the intrinsic defense of cells against retroviruses. Lentiviruses and spumaviruses have evolved essential accessory proteins, Vif and Bet, respectively, which counteract the APOBEC3 proteins. We show here that Bet of the Prototype foamy virus inhibits the antiviral APOBEC3C activity by a mechanism distinct to Vif: Bet forms a complex with APOBEC3C without inducing its degradation. Bet abolished APOBEC3C dimerization as shown by coimmunoprecipitation and cross-linking experiments. These findings implicate a physical interaction between Bet and the APOBEC3C. Subsequently, we identified the Bet interaction domain in human APOBEC3C in the predicted APOBEC3C dimerization site. Taken together, these data support the hypothesis that Bet inhibits incorporation of APOBEC3Cs into retroviral particles. Bet likely achieves this by trapping APOBEC3C protein in complexes rendering them unavailable for newly generated viruses due to direct immobilization.


Asunto(s)
Citidina Desaminasa/antagonistas & inhibidores , Citidina Desaminasa/metabolismo , Provirus/genética , Proteínas de los Retroviridae/fisiología , Desaminasa APOBEC-3G , Animales , Células Cultivadas , Chlorocebus aethiops , Cricetinae , Reactivos de Enlaces Cruzados , Dimerización , Productos del Gen vif/fisiología , Humanos , Immunoblotting , Inmunoprecipitación , Riñón/citología , Riñón/metabolismo , Lentivirus/genética , Lentivirus/metabolismo , Macaca mulatta , Macaca nemestrina , Pan troglodytes , Virus Espumoso de los Simios , Transfección , Ensamble de Virus , Replicación Viral/efectos de los fármacos , Replicación Viral/genética
20.
J Biol Chem ; 281(31): 22161-22172, 2006 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-16735504

RESUMEN

The human cytidine deaminase family APOBEC3 represents a novel group of proteins in the field of innate defense mechanisms that has been shown to be active against a variety of retroviruses. Here we examined whether members of the APO-BEC3 family have an impact on retrotransposition of human long interspersed nuclear elements (LINE-1s or L1s). Using a retrotransposition reporter assay in HeLa cells, we demonstrate that in the presence of transiently transfected APOBEC3A, L1 retrotransposition frequency was reduced by up to 85%. Although APOBEC3G and -3H did not influence L1 retrotransposition notably, expression of APOBEC3B, -3C, and -3F inhibited transposition by approximately 75%. Although reverse transcription of L1s occurs in the nucleus and APOBEC3 proteins are believed to act via DNA deamination during reverse transcription, activity against L1 retrotransposition was not correlated with nuclear localization of APOBEC3s. We demonstrate that APOBEC3C and APOBEC3B were endogenously expressed in HeLa cells. Accordingly, down-regulation of APOBEC3C by RNA interference enhanced L1 retrotransposition by approximately 78%. Sequence analyses of de novo L1 retrotransposition events that occurred in the presence of overexpressed APOBEC3 proteins as well as the analyses of pre-existing endogenous L1 elements did not reveal an enhanced rate of G-to-A transitions, pointing to a mechanism independent of DNA deamination. This study presents evidence for a role of host-encoded APOBEC3 proteins in the regulation of L1 retrotransposition.


Asunto(s)
Citosina Desaminasa/fisiología , Elementos de Nucleótido Esparcido Largo , Desaminasas APOBEC , Núcleo Celular , Citidina Desaminasa/fisiología , Citosina Desaminasa/genética , Células HeLa , Humanos , Cinética , Antígenos de Histocompatibilidad Menor , Mutación Missense , ARN Interferente Pequeño/farmacología , Transcripción Reversa , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA