Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Cell ; 159(2): 318-32, 2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25303528

RESUMEN

Increased adipose tissue lipogenesis is associated with enhanced insulin sensitivity. Mice overexpressing the Glut4 glucose transporter in adipocytes have elevated lipogenesis and increased glucose tolerance despite being obese with elevated circulating fatty acids. Lipidomic analysis of adipose tissue revealed the existence of branched fatty acid esters of hydroxy fatty acids (FAHFAs) that were elevated 16- to 18-fold in these mice. FAHFA isomers differ by the branched ester position on the hydroxy fatty acid (e.g., palmitic-acid-9-hydroxy-stearic-acid, 9-PAHSA). PAHSAs are synthesized in vivo and regulated by fasting and high-fat feeding. PAHSA levels correlate highly with insulin sensitivity and are reduced in adipose tissue and serum of insulin-resistant humans. PAHSA administration in mice lowers ambient glycemia and improves glucose tolerance while stimulating GLP-1 and insulin secretion. PAHSAs also reduce adipose tissue inflammation. In adipocytes, PAHSAs signal through GPR120 to enhance insulin-stimulated glucose uptake. Thus, FAHFAs are endogenous lipids with the potential to treat type 2 diabetes.


Asunto(s)
Tejido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ésteres/metabolismo , Ácidos Grasos/metabolismo , Adulto , Animales , Diabetes Mellitus Tipo 2/dietoterapia , Dieta , Ésteres/administración & dosificación , Ésteres/análisis , Ácidos Grasos/administración & dosificación , Ácidos Grasos/análisis , Femenino , Péptido 1 Similar al Glucagón/metabolismo , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Humanos , Inflamación/dietoterapia , Insulina/metabolismo , Resistencia a la Insulina , Lipogénesis , Masculino , Espectrometría de Masas , Ratones Endogámicos C57BL , Persona de Mediana Edad , Receptores Acoplados a Proteínas G/metabolismo
3.
Nature ; 508(7495): 258-62, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24717514

RESUMEN

In obesity and type 2 diabetes, Glut4 glucose transporter expression is decreased selectively in adipocytes. Adipose-specific knockout or overexpression of Glut4 alters systemic insulin sensitivity. Here we show, using DNA array analyses, that nicotinamide N-methyltransferase (Nnmt) is the most strongly reciprocally regulated gene when comparing gene expression in white adipose tissue (WAT) from adipose-specific Glut4-knockout or adipose-specific Glut4-overexpressing mice with their respective controls. NNMT methylates nicotinamide (vitamin B3) using S-adenosylmethionine (SAM) as a methyl donor. Nicotinamide is a precursor of NAD(+), an important cofactor linking cellular redox states with energy metabolism. SAM provides propylamine for polyamine biosynthesis and donates a methyl group for histone methylation. Polyamine flux including synthesis, catabolism and excretion, is controlled by the rate-limiting enzymes ornithine decarboxylase (ODC) and spermidine-spermine N(1)-acetyltransferase (SSAT; encoded by Sat1) and by polyamine oxidase (PAO), and has a major role in energy metabolism. We report that NNMT expression is increased in WAT and liver of obese and diabetic mice. Nnmt knockdown in WAT and liver protects against diet-induced obesity by augmenting cellular energy expenditure. NNMT inhibition increases adipose SAM and NAD(+) levels and upregulates ODC and SSAT activity as well as expression, owing to the effects of NNMT on histone H3 lysine 4 methylation in adipose tissue. Direct evidence for increased polyamine flux resulting from NNMT inhibition includes elevated urinary excretion and adipocyte secretion of diacetylspermine, a product of polyamine metabolism. NNMT inhibition in adipocytes increases oxygen consumption in an ODC-, SSAT- and PAO-dependent manner. Thus, NNMT is a novel regulator of histone methylation, polyamine flux and NAD(+)-dependent SIRT1 signalling, and is a unique and attractive target for treating obesity and type 2 diabetes.


Asunto(s)
Dieta , Nicotinamida N-Metiltransferasa/deficiencia , Nicotinamida N-Metiltransferasa/metabolismo , Obesidad/enzimología , Obesidad/prevención & control , Acetiltransferasas/metabolismo , Adipocitos/metabolismo , Tejido Adiposo/enzimología , Tejido Adiposo/metabolismo , Tejido Adiposo Blanco/enzimología , Tejido Adiposo Blanco/metabolismo , Animales , Diabetes Mellitus Tipo 2/enzimología , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético , Hígado Graso , Técnicas de Silenciamiento del Gen , Intolerancia a la Glucosa , Transportador de Glucosa de Tipo 4/deficiencia , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Resistencia a la Insulina , Hígado/enzimología , Masculino , Ratones , Ratones Endogámicos C57BL , NAD/metabolismo , Niacinamida/metabolismo , Nicotinamida N-Metiltransferasa/genética , Obesidad/etiología , Obesidad/genética , Ornitina Descarboxilasa/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , S-Adenosilmetionina/metabolismo , Sirtuina 1/metabolismo , Espermina/análogos & derivados , Espermina/metabolismo , Delgadez/enzimología , Delgadez/metabolismo , Poliamino Oxidasa
4.
Nature ; 484(7394): 333-8, 2012 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-22466288

RESUMEN

The prevalence of obesity and type 2 diabetes is increasing worldwide and threatens to shorten lifespan. Impaired insulin action in peripheral tissues is a major pathogenic factor. Insulin stimulates glucose uptake in adipose tissue through the GLUT4 (also known as SLC2A4) glucose transporter, and alterations in adipose tissue GLUT4 expression or function regulate systemic insulin sensitivity. Downregulation of human and mouse adipose tissue GLUT4 occurs early in diabetes development. Here we report that adipose tissue GLUT4 regulates the expression of carbohydrate-responsive-element-binding protein (ChREBP; also known as MLXIPL), a transcriptional regulator of lipogenic and glycolytic genes. Furthermore, adipose ChREBP is a major determinant of adipose tissue fatty acid synthesis and systemic insulin sensitivity. We find a new mechanism for glucose regulation of ChREBP: glucose-mediated activation of the canonical ChREBP isoform (ChREBP-α) induces expression of a novel, potent isoform (ChREBP-ß) that is transcribed from an alternative promoter. ChREBP-ß expression in human adipose tissue predicts insulin sensitivity, indicating that it may be an effective target for treating diabetes.


Asunto(s)
Tejido Adiposo/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Glucosa/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Adipocitos/metabolismo , Tejido Adiposo/citología , Tejido Adiposo/patología , Adiposidad , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/química , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Glucemia/metabolismo , Índice de Masa Corporal , Peso Corporal , Células Cultivadas , Estudios de Cohortes , Estudios Transversales , Diabetes Mellitus/sangre , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Femenino , Regulación de la Expresión Génica/genética , Genotipo , Glucosa/farmacología , Intolerancia a la Glucosa/genética , Transportador de Glucosa de Tipo 4/biosíntesis , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Homeostasis/genética , Humanos , Insulina/metabolismo , Insulina/farmacología , Resistencia a la Insulina/genética , Lipogénesis , Masculino , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Proteínas Nucleares/química , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Obesidad/genética , Obesidad/metabolismo , Regiones Promotoras Genéticas/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/química , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
5.
Biochemistry ; 55(33): 4636-41, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27509211

RESUMEN

A recently discovered class of endogenous mammalian lipids, branched fatty acid esters of hydroxy fatty acids (FAHFAs), possesses anti-diabetic and anti-inflammatory activities. Here, we identified and validated carboxyl ester lipase (CEL), a pancreatic enzyme hydrolyzing cholesteryl esters and other dietary lipids, as a FAHFA hydrolase. Variants of CEL have been linked to maturity-onset diabetes of the young, type 8 (MODY8), and to chronic pancreatitis. We tested the FAHFA hydrolysis activity of the CEL MODY8 variant and found a modest increase in activity as compared with that of the normal enzyme. Together, the data suggest that CEL might break down dietary FAHFAs.


Asunto(s)
Carboxilesterasa/metabolismo , Ácidos Grasos/química , Ésteres , Especificidad por Sustrato
6.
Nat Cell Biol ; 9(8): 970-7, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17643114

RESUMEN

Cysteine proteases play an important part in human pathobiology. This report shows the participation of cathepsin L (CatL) in adipogenesis and glucose intolerance. In vitro studies demonstrate the role of CatL in the degradation of the matrix protein fibronectin, insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF-1R), essential molecules for adipogenesis and glucose metabolism. CatL inhibition leads to the reduction of human and murine pre-adipocyte adipogenesis or lipid accumulation, protection of fibronectin from degradation, accumulation of IR and IGF-1R beta-subunits, and an increase in glucose uptake. CatL-deficient mice are lean and have reduced levels of serum glucose and insulin but increased levels of muscle IR beta-subunits, fibronectin and glucose transporter (Glut)-4, although food/water intake and energy expenditure of these mice are no less than their wild-type littermates. Importantly, the pharmacological inhibition of CatL also demonstrates reduced body weight gain and serum insulin levels, and increased glucose tolerance, probably due to increased levels of muscle IR beta-subunits, fibronectin and Glut-4 in both diet-induced obese mice and ob/ob mice. Increased levels of CatL in obese and diabetic patients suggest that this protease is a novel target for these metabolic disorders.


Asunto(s)
Adipogénesis/fisiología , Catepsinas/metabolismo , Cisteína Endopeptidasas/metabolismo , Intolerancia a la Glucosa , Adipocitos/citología , Adipocitos/fisiología , Animales , Peso Corporal , Proteína alfa Potenciadora de Unión a CCAAT/genética , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Catepsina L , Catepsinas/antagonistas & inhibidores , Catepsinas/genética , Diferenciación Celular/fisiología , Células Cultivadas , Cisteína Endopeptidasas/genética , Compuestos Epoxi/metabolismo , Fibronectinas/metabolismo , Glucosa/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , PPAR gamma/genética , PPAR gamma/metabolismo , Piridinas/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo
7.
Cell Metab ; 5(4): 305-12, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17403374

RESUMEN

In the postabsorptive state, certain tissues, including the brain, require glucose as the sole source of energy. After an overnight fast, hepatic glycogen stores are depleted, and gluconeogenesis becomes essential for preventing life-threatening hypoglycemia. Mice with a targeted deletion of KLF15, a member of the Krüppel-like family of transcription factors, display severe hypoglycemia after an overnight (18 hr) fast. We provide evidence that defective amino acid catabolism promotes the development of fasting hypoglycemia in KLF15-/- mice by limiting gluconeogenic substrate availability. KLF15-/- liver and skeletal muscle show markedly reduced mRNA expression of amino acid-degrading enzymes. Furthermore, the enzymatic activity of alanine aminotransferase (ALT), which converts the critical gluconeogenic amino acid alanine into pyruvate, is decreased (approximately 50%) in KLF15-/- hepatocytes. Consistent with this observation, intraperitoneal injection of pyruvate, but not alanine, rescues fasting hypoglycemia in KLF15-/- mice. We conclude that KLF15 plays an important role in the regulation of gluconeogenesis.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Regulación de la Expresión Génica , Gluconeogénesis/genética , Factores de Transcripción/fisiología , Alanina Transaminasa/metabolismo , Aminoácidos/sangre , Aminoácidos/metabolismo , Animales , Proteínas de Unión al ADN/genética , Glucosa/metabolismo , Glicerol/metabolismo , Factores de Transcripción de Tipo Kruppel , Ácido Láctico/metabolismo , Hígado/enzimología , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/enzimología , Músculo Esquelético/metabolismo , Factores de Transcripción/genética
8.
J Biol Chem ; 286(11): 8798-809, 2011 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-21209093

RESUMEN

AMP-activated protein kinase (AMPK), an evolutionarily conserved serine-threonine kinase that senses cellular energy status, is activated by stress and neurohumoral stimuli. We investigated the mechanisms by which adrenergic signaling alters AMPK activation in vivo. Brown adipose tissue (BAT) is highly enriched in sympathetic innervation, which is critical for regulation of energy homeostasis. We performed unilateral denervation of BAT in wild type (WT) mice to abolish neural input. Six days post-denervation, UCP-1 protein levels and AMPK α2 protein and activity were reduced by 45%. In ß(1,2,3)-adrenergic receptor knock-out mice, unilateral denervation led to a 25-45% decrease in AMPK activity, protein expression, and Thr(172) phosphorylation. In contrast, acute α- or ß-adrenergic blockade in WT mice resulted in increased AMPK α Thr(172) phosphorylation and AMPK α1 and α2 activity in BAT. But short term blockade of α-adrenergic signaling in ß(1,2,3)-adrenergic receptor knock-out mice resulted in decreased AMPK activity in BAT, which strongly correlated with enhanced phosphorylation of AMPK on Ser(485/491), a site associated with inhibition of AMPK activity. Both PKA and AKT inhibitors attenuated AMPK Ser(485/491) phosphorylation resulting from α-adrenergic blockade and prevented decreases in AMPK activity. In vitro mechanistic studies in BAT explants showed that the effects of α-adrenergic blockade appeared to be secondary to inhibition of oxygen consumption. In conclusion, adrenergic pathways regulate AMPK activity in vivo acutely via alterations in Thr(172) phosphorylation and chronically through changes in the α catalytic subunit protein levels. Furthermore, AMPK α Ser(485/491) phosphorylation may be a novel mechanism to inhibit AMPK activity in vivo and alter its biological effects.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Tejido Adiposo Pardo/metabolismo , Receptores Adrenérgicos/metabolismo , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/genética , Tejido Adiposo Pardo/inervación , Antagonistas Adrenérgicos/farmacología , Animales , Canales Iónicos/genética , Canales Iónicos/metabolismo , Ratones , Ratones Noqueados , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Adrenérgicos/genética , Proteína Desacopladora 1
9.
J Biol Chem ; 285(15): 11348-56, 2010 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-20093359

RESUMEN

Whereas the role of adipose tissue in glucose and lipid homeostasis is widely recognized, its role in systemic protein and amino acid metabolism is less well-appreciated. In vitro and ex vivo experiments suggest that adipose tissue can metabolize substantial amounts of branched chain amino acids (BCAAs). However, the role of adipose tissue in regulating BCAA metabolism in vivo is controversial. Interest in the contribution of adipose tissue to BCAA metabolism has been renewed with recent observations demonstrating down-regulation of BCAA oxidation enzymes in adipose tissue in obese and insulin-resistant humans. Using gene set enrichment analysis, we observe alterations in adipose-tissue BCAA enzyme expression caused by adipose-selective genetic alterations in the GLUT4 glucose-transporter expression. We show that the rate of adipose tissue BCAA oxidation per mg of tissue from normal mice is higher than in skeletal muscle. In mice overexpressing GLUT4 specifically in adipose tissue, we observe coordinate down-regulation of BCAA metabolizing enzymes selectively in adipose tissue. This decreases BCAA oxidation rates in adipose tissue, but not in muscle, in association with increased circulating BCAA levels. To confirm the capacity of adipose tissue to modulate circulating BCAA levels in vivo, we demonstrate that transplantation of normal adipose tissue into mice that are globally defective in peripheral BCAA metabolism reduces circulating BCAA levels by 30% (fasting)-50% (fed state). These results demonstrate for the first time the capacity of adipose tissue to catabolize circulating BCAAs in vivo and that coordinate regulation of adipose-tissue BCAA enzymes may modulate circulating BCAA levels.


Asunto(s)
Tejido Adiposo/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Proteínas de Transporte de Membrana/genética , Animales , Femenino , Transportador de Glucosa de Tipo 4/metabolismo , Homeostasis , Resistencia a la Insulina , Lípidos/química , Ratones , Ratones Noqueados , Modelos Biológicos , Transportadores de Ácidos Monocarboxílicos , Obesidad/metabolismo , Oxígeno/química , Proteínas Quinasas S6 Ribosómicas/metabolismo
10.
Nature ; 436(7049): 356-62, 2005 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-16034410

RESUMEN

In obesity and type 2 diabetes, expression of the GLUT4 glucose transporter is decreased selectively in adipocytes. Adipose-specific Glut4 (also known as Slc2a4) knockout (adipose-Glut4(-/-)) mice show insulin resistance secondarily in muscle and liver. Here we show, using DNA arrays, that expression of retinol binding protein-4 (RBP4) is elevated in adipose tissue of adipose-Glut4(-/-) mice. We show that serum RBP4 levels are elevated in insulin-resistant mice and humans with obesity and type 2 diabetes. RBP4 levels are normalized by rosiglitazone, an insulin-sensitizing drug. Transgenic overexpression of human RBP4 or injection of recombinant RBP4 in normal mice causes insulin resistance. Conversely, genetic deletion of Rbp4 enhances insulin sensitivity. Fenretinide, a synthetic retinoid that increases urinary excretion of RBP4, normalizes serum RBP4 levels and improves insulin resistance and glucose intolerance in mice with obesity induced by a high-fat diet. Increasing serum RBP4 induces hepatic expression of the gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK) and impairs insulin signalling in muscle. Thus, RBP4 is an adipocyte-derived 'signal' that may contribute to the pathogenesis of type 2 diabetes. Lowering RBP4 could be a new strategy for treating type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/sangre , Resistencia a la Insulina/fisiología , Obesidad/sangre , Proteínas de Unión al Retinol/metabolismo , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Transportador de Glucosa de Tipo 4 , Hepatocitos/efectos de los fármacos , Hepatocitos/enzimología , Hepatocitos/metabolismo , Insulina/farmacología , Hígado/citología , Hígado/efectos de los fármacos , Hígado/enzimología , Ratones , Ratones Noqueados , Proteínas de Transporte de Monosacáridos/deficiencia , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas Musculares/deficiencia , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculos/efectos de los fármacos , Músculos/metabolismo , Obesidad/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Proteínas de Unión al Retinol/genética , Proteínas Plasmáticas de Unión al Retinol , Rosiglitazona , Transducción de Señal/efectos de los fármacos , Tiazolidinedionas/farmacología
11.
Am J Physiol Endocrinol Metab ; 297(6): E1420-9, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19826103

RESUMEN

The synthetic retinoid Fenretinide (FEN) increases insulin sensitivity in obese rodents and is in early clinical trials for treatment of insulin resistance in obese humans with hepatic steatosis (46). We aimed to determine the physiological mechanisms for the insulin-sensitizing effects of FEN. Wild-type mice were fed a high-fat diet (HFD) with or without FEN from 4-5 wk to 36-37 wk of age (preventive study) or following 22 wk of HF diet-induced obesity (12 wk intervention study). Retinol-binding protein-4 (RBP4) knockout mice were also fed the HFD with or without FEN in a preventive study. FEN had minimal effects on HFD-induced body weight gain but markedly reduced HFD-induced adiposity and hyperleptinemia in both studies. FEN-HFD mice gained epididymal fat but not subcutaneous or visceral fat mass in contrast to HFD mice without FEN. FEN did not have a measurable effect on energy expenditure, food intake, physical activity, or stool lipid content. Glucose infusion rate during hyperinsulinemic-euglycemic clamp was reduced 86% in HFD mice compared with controls and was improved 3.6-fold in FEN-HFD compared with HFD mice. FEN improved insulin action on glucose uptake and glycogen levels in muscle, insulin-stimulated suppression of hepatic glucose production, and suppression of serum FFA levels in HFD mice. Remarkably, FEN also reduced hepatic steatosis. In RBP4 knockout mice, FEN reduced the HFD-induced increase in adiposity and hyperleptinemia. In conclusion, long-term therapy with FEN partially prevents or reverses obesity, insulin resistance, and hepatic steatosis in mice on HFD. The anti-adiposity effects are independent of the RBP4 lowering effect.


Asunto(s)
Hígado Graso/metabolismo , Fenretinida/administración & dosificación , Resistencia a la Insulina/fisiología , Obesidad/prevención & control , Retinoides/administración & dosificación , Animales , Composición Corporal/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Calorimetría Indirecta , Estudios de Cohortes , Esquema de Medicación , Ingestión de Alimentos/efectos de los fármacos , Técnica de Clampeo de la Glucosa , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/metabolismo , Proteínas de Unión al Retinol/metabolismo
12.
Dev Cell ; 3(1): 25-38, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12110165

RESUMEN

Insulin signaling in adipose tissue plays an important role in lipid storage and regulation of glucose homeostasis. Using the Cre-loxP system, we created mice with fat-specific disruption of the insulin receptor gene (FIRKO mice). These mice have low fat mass, loss of the normal relationship between plasma leptin and body weight, and are protected against age-related and hypothalamic lesion-induced obesity, and obesity-related glucose intolerance. FIRKO mice also exhibit polarization of adipocytes into populations of large and small cells, which differ in expression of fatty acid synthase, C/EBP alpha, and SREBP-1. Thus, insulin signaling in adipocytes is critical for development of obesity and its associated metabolic abnormalities, and abrogation of insulin signaling in fat unmasks a heterogeneity in adipocyte response in terms of gene expression and triglyceride storage.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/genética , Intolerancia a la Glucosa/genética , Insulina/metabolismo , Péptidos y Proteínas de Señalización Intercelular , Proteínas Musculares , Obesidad/genética , Receptor de Insulina/deficiencia , Factores de Transcripción , Adiponectina , Tejido Adiposo/fisiopatología , Animales , Aurotioglucosa/farmacología , Peso Corporal/genética , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Tamaño de la Célula/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Metabolismo Energético/genética , Femenino , Glucosa/metabolismo , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/fisiopatología , Transportador de Glucosa de Tipo 1 , Transportador de Glucosa de Tipo 4 , Leptina/sangre , Masculino , Ratones , Ratones Noqueados , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Obesidad/metabolismo , Obesidad/fisiopatología , Proteínas/genética , Proteínas/metabolismo , Receptor de Insulina/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Núcleo Hipotalámico Ventromedial/efectos de los fármacos , Núcleo Hipotalámico Ventromedial/patología , Núcleo Hipotalámico Ventromedial/fisiopatología
13.
J Clin Invest ; 129(10): 4138-4150, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31449056

RESUMEN

Palmitic acid esters of hydroxy stearic acids (PAHSAs) are bioactive lipids with antiinflammatory and antidiabetic effects. PAHSAs reduce ambient glycemia and improve glucose tolerance and insulin sensitivity in insulin-resistant aged chow- and high-fat diet-fed (HFD-fed) mice. Here, we aimed to determine the mechanisms by which PAHSAs improve insulin sensitivity. Both acute and chronic PAHSA treatment enhanced the action of insulin to suppress endogenous glucose production (EGP) in chow- and HFD-fed mice. Moreover, chronic PAHSA treatment augmented insulin-stimulated glucose uptake in glycolytic muscle and heart in HFD-fed mice. The mechanisms by which PAHSAs enhanced hepatic insulin sensitivity included direct and indirect actions involving intertissue communication between adipose tissue and liver. PAHSAs inhibited lipolysis directly in WAT explants and enhanced the action of insulin to suppress lipolysis during the clamp in vivo. Preventing the reduction of free fatty acids during the clamp with Intralipid infusion reduced PAHSAs' effects on EGP in HFD-fed mice but not in chow-fed mice. Direct hepatic actions of PAHSAs may also be important, as PAHSAs inhibited basal and glucagon-stimulated EGP directly in isolated hepatocytes through a cAMP-dependent pathway involving Gαi protein-coupled receptors. Thus, this study advances our understanding of PAHSA biology and the physiologic mechanisms by which PAHSAs exert beneficial metabolic effects.


Asunto(s)
Resistencia a la Insulina/fisiología , Hígado/efectos de los fármacos , Hígado/metabolismo , Estearatos/farmacología , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Animales , AMP Cíclico/metabolismo , Dieta Alta en Grasa/efectos adversos , Glucagón/farmacología , Técnicas In Vitro , Lipólisis/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Estearatos/administración & dosificación
14.
Mol Cell Biol ; 25(21): 9713-23, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16227617

RESUMEN

Mice with muscle-specific knockout of the Glut4 glucose transporter (muscle-G4KO) are insulin resistant and mildly diabetic. Here we show that despite markedly reduced glucose transport in muscle, muscle glycogen content in the fasted state is increased. We sought to determine the mechanism(s). Basal glycogen synthase activity is increased by 34% and glycogen phosphorylase activity is decreased by 17% (P < 0.05) in muscle of muscle-G4KO mice. Contraction-induced glycogen breakdown is normal. The increased glycogen synthase activity occurs in spite of decreased signaling through the insulin receptor substrate 1 (IRS-1)-phosphoinositide (PI) 3-kinase-Akt pathway and increased glycogen synthase kinase 3beta (GSK3beta) activity in the basal state. Hexokinase II is increased, leading to an approximately twofold increase in glucose-6-phosphate levels. In addition, the levels of two scaffolding proteins that are glycogen-targeting subunits of protein phosphatase 1 (PP1), the muscle-specific regulatory subunit (RGL) and the protein targeting to glycogen (PTG), are strikingly increased by 3.2- to 4.2-fold in muscle of muscle-G4KO mice compared to wild-type mice. The catalytic activity of PP1, which dephosphorylates and activates glycogen synthase, is also increased. This dominates over the GSK3 effects, since glycogen synthase phosphorylation on the GSK3-regulated site is decreased. Thus, the markedly reduced glucose transport in muscle results in increased glycogen synthase activity due to increased hexokinase II, glucose-6-phosphate, and RGL and PTG levels and enhanced PP1 activity. This, combined with decreased glycogen phosphorylase activity, results in increased glycogen content in muscle in the fasted state when glucose transport is reduced.


Asunto(s)
Transportador de Glucosa de Tipo 4/fisiología , Glucógeno/metabolismo , Músculo Esquelético/metabolismo , Animales , Ayuno/metabolismo , Femenino , Transportador de Glucosa de Tipo 4/genética , Glucosa-6-Fosfato/metabolismo , Glucógeno Fosforilasa/metabolismo , Glucógeno Sintasa/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Hexoquinasa/metabolismo , Técnicas In Vitro , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Glucógeno Hepático/metabolismo , Masculino , Ratones , Ratones Noqueados , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Proteína Fosfatasa 1 , Proteínas Proto-Oncogénicas c-akt/metabolismo
15.
Cell Metab ; 28(4): 543-546, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30244974

RESUMEN

PAHSAs are anti-diabetic and anti-inflammatory lipids. Syed et al. identify numerous experimental differences that likely account for the failure of Pflimlin et al. to observe PAHSA beneficial effects. The differences include different HFDs resulting in minimal/no glucose intolerance, different assay conditions, an LC-MS protocol that was not validated, and use of olive oil, a bioactive nutrient that improves glucose tolerance, as a vehicle.


Asunto(s)
Glucemia , Lípidos , Animales , Ratones
16.
Cell Metab ; 27(2): 419-427.e4, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29414687

RESUMEN

Palmitic acid hydroxystearic acids (PAHSAs) are endogenous lipids with anti-diabetic and anti-inflammatory effects. PAHSA levels are reduced in serum and adipose tissue of insulin-resistant people and high-fat diet (HFD)-fed mice. Here, we investigated whether chronic PAHSA treatment enhances insulin sensitivity and which receptors mediate PAHSA effects. Chronic PAHSA administration in chow- and HFD-fed mice raises serum and tissue PAHSA levels ∼1.4- to 3-fold. This improves insulin sensitivity and glucose tolerance without altering body weight. PAHSA administration in chow-fed, but not HFD-fed, mice augments insulin and glucagon-like peptide (GLP-1) secretion. PAHSAs are selective agonists for GPR40, increasing Ca+2 flux, but not intracellular cyclic AMP. Blocking GPR40 reverses improvements in glucose tolerance and insulin sensitivity in PAHSA-treated chow- and HFD-fed mice and directly inhibits PAHSA augmentation of glucose-stimulated insulin secretion in human islets. In contrast, GLP-1 receptor blockade in PAHSA-treated chow-fed mice reduces PAHSA effects on glucose tolerance, but not on insulin sensitivity. Thus, PAHSAs activate GPR40, which is involved in their beneficial metabolic effects.


Asunto(s)
Glucosa/metabolismo , Homeostasis , Ácido Palmítico/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Ácidos Esteáricos/farmacología , Adiposidad/efectos de los fármacos , Animales , Ingestión de Alimentos/efectos de los fármacos , Células HEK293 , Homeostasis/efectos de los fármacos , Humanos , Inflamación/patología , Resistencia a la Insulina , Ratones Endogámicos C57BL
17.
J Clin Invest ; 114(11): 1666-75, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15578099

RESUMEN

A critical defect in type 2 diabetes is impaired insulin-stimulated glucose transport and metabolism in muscle and adipocytes. To understand the metabolic adaptations this elicits, we generated mice with targeted disruption of the GLUT4 glucose transporter in both adipocytes and muscle (AMG4KO). In contrast to total body GLUT4-null mice, AMG4KO mice exhibit normal growth, development, adipose mass, and longevity. They develop fasting hyperglycemia and glucose intolerance and are at risk for greater insulin resistance than mice lacking GLUT4 in only one tissue. Hyperinsulinemic-euglycemic clamp studies showed a 75% decrease in glucose infusion rate and markedly reduced 2-deoxyglucose uptake into skeletal muscle (85-90%) and white adipose tissue (65%). However, AMG4KO mice adapt by preferentially utilizing lipid fuels, as evidenced by a lower respiratory quotient and increased clearance of lipids from serum after oral lipid gavage. While insulin action on hepatic glucose production and gluconeogenic enzymes is impaired, hepatic glucokinase expression, incorporation of 14C-glucose into lipids, and hepatic VLDL-triglyceride release are increased. The lipogenic activity may be mediated by increased hepatic expression of SREBP-1c and acetyl-CoA carboxylase. Thus, inter-tissue communication results in adaptations to impaired glucose transport in muscle and adipocytes that involve increased hepatic glucose uptake and lipid synthesis, while muscle adapts by preferentially utilizing lipid fuels. Genetic determinants limiting this "metabolic flexibility" may contribute to insulin resistance and type 2 diabetes in humans.


Asunto(s)
Tejido Adiposo/fisiología , Metabolismo de los Lípidos , Hígado/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas Musculares/metabolismo , Músculos/fisiología , Tejido Adiposo/citología , Animales , Peso Corporal/fisiología , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético , Femenino , Glucosa/metabolismo , Intolerancia a la Glucosa/genética , Prueba de Tolerancia a la Glucosa , Transportador de Glucosa de Tipo 1 , Transportador de Glucosa de Tipo 4 , Humanos , Insulina/metabolismo , Resistencia a la Insulina/genética , Lipoproteínas VLDL/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Transporte de Monosacáridos/genética , Proteínas Musculares/genética , Fenotipo , Triglicéridos/metabolismo
18.
Mol Cell Biol ; 24(11): 5080-7, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15143198

RESUMEN

Phosphorylated derivatives of the lipid phosphatidylinositol are known to play critical roles in insulin response. Phosphatidylinositol 5-phosphate 4-kinases convert phosphatidylinositol 5-phosphate to phosphatidylinositol 4,5-bis-phosphate. To understand the physiological role of these kinases, we generated mice that do not express phosphatidylinositol 5-phosphate 4-kinase beta. These mice are hypersensitive to insulin and have reduced body weights compared to wild-type littermates. While adult male mice lacking phosphatidylinositol 5-phosphate 4-kinase beta have significantly less body fat than wild-type littermates, female mice lacking phosphatidylinositol 5-phosphate 4-kinase beta have increased insulin sensitivity in the presence of normal adiposity. Furthermore, in vivo insulin-induced activation of the protein kinase Akt is enhanced in skeletal muscle and liver from mice lacking phosphatidylinositol 5-phosphate 4-kinase beta. These results indicate that phosphatidylinositol 5-phosphate 4-kinase beta plays a role in determining insulin sensitivity and adiposity in vivo and suggest that inhibitors of this enzyme may be useful in the treatment of type 2 diabetes.


Asunto(s)
Tejido Adiposo/metabolismo , Insulina/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferasas/metabolismo , Animales , Ingestión de Alimentos/genética , Ingestión de Alimentos/fisiología , Femenino , Leptina/sangre , Leptina/metabolismo , Masculino , Ratones , Ratones Noqueados , Músculo Esquelético/metabolismo , Fosfotransferasas/genética
19.
Cell Rep ; 21(4): 1021-1035, 2017 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-29069585

RESUMEN

Lower adipose-ChREBP and de novo lipogenesis (DNL) are associated with insulin resistance in humans. Here, we generated adipose-specific ChREBP knockout (AdChREBP KO) mice with negligible sucrose-induced DNL in adipose tissue (AT). Chow-fed AdChREBP KO mice are insulin resistant with impaired insulin action in the liver, muscle, and AT and increased AT inflammation. HFD-fed AdChREBP KO mice are also more insulin resistant than controls. Surprisingly, adipocytes lacking ChREBP display a cell-autonomous reduction in insulin-stimulated glucose transport that is mediated by impaired Glut4 translocation and exocytosis, not lower Glut4 levels. AdChREBP KO mice have lower levels of palmitic acid esters of hydroxy stearic acids (PAHSAs) in serum, and AT. 9-PAHSA supplementation completely rescues their insulin resistance and AT inflammation. 9-PAHSA also normalizes impaired glucose transport and Glut4 exocytosis in ChREBP KO adipocytes. Thus, loss of adipose-ChREBP is sufficient to cause insulin resistance, potentially by regulating AT glucose transport and flux through specific lipogenic pathways.


Asunto(s)
Adipocitos/metabolismo , Glucosa/metabolismo , Resistencia a la Insulina , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Células 3T3 , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Células Cultivadas , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Proteínas Nucleares/genética , Ácidos Palmíticos/sangre , Ácidos Esteáricos/sangre , Factores de Transcripción/genética
20.
Diabetes ; 65(5): 1317-27, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26936962

RESUMEN

Adipose tissue (AT) inflammation contributes to impaired insulin action, which is a major cause of type 2 diabetes. RBP4 is an adipocyte- and liver-derived protein with an important role in insulin resistance, metabolic syndrome, and AT inflammation. RBP4 elevation causes AT inflammation by activating innate immunity, which elicits an adaptive immune response. RBP4-overexpressing mice (RBP4-Ox) are insulin resistant and glucose intolerant and have increased AT macrophages and T-helper 1 cells. We show that high-fat diet-fed RBP4(-/-) mice have reduced AT inflammation and improved insulin sensitivity versus wild type. We also elucidate the mechanism for RBP4-induced macrophage antigen presentation and subsequent T-cell activation. In RBP4-Ox, AT macrophages display enhanced c-Jun N-terminal kinase, extracellular signal-related kinase, and p38 phosphorylation. Inhibition of these pathways and of NF-κB reduces activation of macrophages and CD4 T cells. MyD88 is an adaptor protein involved in proinflammatory signaling. In macrophages from MyD88(-/-) mice, RBP4 fails to stimulate secretion of tumor necrosis factor, IL-12, and IL-6 and CD4 T-cell activation. In vivo blockade of antigen presentation by treating RBP4-Ox mice with CTLA4-Ig, which blocks costimulation of T cells, is sufficient to reduce AT inflammation and improve insulin resistance. Thus, MyD88 and downstream mitogen-activated protein kinase and NF-κB pathways are necessary for RBP4-induced macrophage antigen presentation and subsequent T-cell activation. Also, blocking antigen presentation with CTLA4-Ig improves RBP4-induced insulin resistance and macrophage-induced T-cell activation.


Asunto(s)
Inmunidad Adaptativa , Presentación de Antígeno , Linfocitos T CD4-Positivos/inmunología , Resistencia a la Insulina , Activación de Linfocitos , Obesidad/inmunología , Proteínas Plasmáticas de Unión al Retinol/metabolismo , Tejido Adiposo/inmunología , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Animales , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Células Presentadoras de Antígenos/patología , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/patología , Células Cultivadas , Técnicas de Cocultivo , Dieta Alta en Grasa/efectos adversos , Intolerancia a la Glucosa/etiología , Intolerancia a la Glucosa/inmunología , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/patología , Heterocigoto , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Obesidad/etiología , Obesidad/metabolismo , Obesidad/patología , Proteínas Plasmáticas de Unión al Retinol/genética , Bazo/inmunología , Bazo/metabolismo , Bazo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA