Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nat Mater ; 22(9): 1094-1099, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37365227

RESUMEN

The control of elastic and inelastic electron tunnelling relies on materials with well-defined interfaces. Two-dimensional van der Waals materials are an excellent platform for such studies. Signatures of acoustic phonons and defect states have been observed in current-to-voltage measurements. These features can be explained by direct electron-phonon or electron-defect interactions. Here we use a tunnelling process that involves excitons in transition metal dichalcogenides (TMDs). We study tunnel junctions consisting of graphene and gold electrodes separated by hexagonal boron nitride with an adjacent TMD monolayer and observe prominent resonant features in current-to-voltage measurements appearing at bias voltages that correspond to TMD exciton energies. By placing the TMD outside of the tunnelling pathway, we demonstrate that this tunnelling process does not require any charge injection into the TMD. The appearance of such optical modes in electrical transport introduces additional functionality towards van der Waals material-based optoelectronic devices.

2.
Nano Lett ; 23(18): 8474-8480, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37671914

RESUMEN

Bottom-up synthesized graphene nanoribbons (GNRs) are increasingly attracting interest due to their atomically controlled structure and customizable physical properties. In recent years, a range of GNR-based field-effect transistors (FETs) has been fabricated, with several demonstrating quantum-dot (QD) behavior at cryogenic temperatures. However, understanding the relationship between the cryogenic charge-transport characteristics and the number of the GNRs in the device is challenging, as the length and location of the GNRs in the junction are not precisely controlled. Here, we present a methodology based on a dual-gate FET that allows us to identify different scenarios, such as single GNRs, double or multiple GNRs in parallel, and a single GNR interacting with charge traps. Our dual-gate FET architecture therefore offers a quantitative approach for comprehending charge transport in atomically precise GNRs.

3.
Small ; 18(31): e2202301, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35713270

RESUMEN

The electronic, optical, and magnetic properties of graphene nanoribbons (GNRs) can be engineered by controlling their edge structure and width with atomic precision through bottom-up fabrication based on molecular precursors. This approach offers a unique platform for all-carbon electronic devices but requires careful optimization of the growth conditions to match structural requirements for successful device integration, with GNR length being the most critical parameter. In this work, the growth, characterization, and device integration of 5-atom wide armchair GNRs (5-AGNRs) are studied, which are expected to have an optimal bandgap as active material in switching devices. 5-AGNRs are obtained via on-surface synthesis under ultrahigh vacuum conditions from Br- and I-substituted precursors. It is shown that the use of I-substituted precursors and the optimization of the initial precursor coverage quintupled the average 5-AGNR length. This significant length increase allowed the integration of 5-AGNRs into devices and the realization of the first field-effect transistor based on narrow bandgap AGNRs that shows switching behavior at room temperature. The study highlights that the optimized growth protocols can successfully bridge between the sub-nanometer scale, where atomic precision is needed to control the electronic properties, and the scale of tens of nanometers relevant for successful device integration of GNRs.

4.
Phys Chem Chem Phys ; 22(23): 12849-12866, 2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32510070

RESUMEN

In recent years, a wide range of single-molecule devices has been realized, enabled by technological advances combined with the versatility offered by synthetic chemistry. In particular, single-molecule diodes have attracted significant attention with an ongoing effort to increase the rectification ratio between the forward and reverse current. Various mechanisms have been investigated to improve rectification, either based on molecule-intrinsic properties or by engineering the coupling of the molecule to the electrodes. In this perspective, we first provide an overview of the current experimental approaches reported in literature to achieve rectification at the single-molecule level. We then proceed with our recent efforts in this direction, exploiting the internal structure of multi-site molecules, yielding the highest rectification ratio based on a molecule-intrinsic mechanism. We introduce the theoretical framework for multi-site molecules and infer general design guidelines from this. Based on these guidelines, a series of two-site molecules have been developed and integrated into devices. Using two- and three-terminal mechanically controllable break junction measurements, we show that depending on the on-site energies, which are tunable by chemical design, the devices either exhibit pronounced negative differential conductance, or behave as highly-efficient rectifiers. Finally, we propose a design of a single-molecule diode with a theoretical rectification ratio exceeding a million.

5.
Nano Lett ; 18(9): 5981-5988, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30134105

RESUMEN

An appealing feature of molecular electronics is the possibility of inducing changes in the orbital structure through external stimuli. This can provide functionality on the single-molecule level that can be employed for sensing or switching purposes if the associated conductance changes are sizable upon application of the stimuli. Here, we show that the room-temperature conductance of a spring-like molecule can be mechanically controlled up to an order of magnitude by compressing or elongating it. Quantum-chemistry calculations indicate that the large conductance variations are the result of destructive quantum interference effects between the frontier orbitals that can be lifted by applying either compressive or tensile strain to the molecule. When periodically modulating the electrode separation, a conductance modulation at double the driving frequency is observed, providing a direct proof for the presence of quantum interference. Furthermore, oscillations in the conductance occur when the stress built up in the molecule is high enough to allow the anchoring groups to move along the surface in a stick-slip-like fashion. The mechanical control of quantum interference effects results in the largest-gauge factor reported for single-molecule devices up to now, which may open the door for applications in, e.g., a nanoscale mechanosensitive sensing device that is functional at room temperature.

6.
Phys Chem Chem Phys ; 19(43): 29187-29194, 2017 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-29067364

RESUMEN

We propose the design of a single-molecule diode with a rectification ratio exceeding a million. The employed mechanism is based on coherent resonant charge transport across a molecule that consists of four conjugated sites coupled by non-conjugated bridges. Using density functional theory calculations, we rationalize the design of the molecule and demonstrate the crucial role of aligning the sites at a specific voltage. Rectification ratios are calculated for a series of chemical substituents and demonstrate that with careful molecular design, high rectification ratios can be achieved. Finally, we comment on the shortcomings of our approach, how further improvements can be obtained and discuss some of the experimental challenges.

7.
J Am Chem Soc ; 138(27): 8465-9, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27266477

RESUMEN

We report on an approach to realize carbon-gold (C-Au) bonded molecular junctions without the need for an additive to deprotect the alkynyl carbon as endstanding anchor group. Using the mechanically controlled break junction (MCBJ) technique, we determine the most probable conductance value of a family of alkynyl terminated oligophenylenes (OPA(n)) connected to gold electrodes through such an akynyl moiety in ambient conditions. The molecules bind to the gold leads through an sp-hybridized carbon atom at each side. Comparing our results with other families of molecules that present organometallic C-Au bonds, we conclude that the conductance of molecules contacted via an sp-hybridized carbon atom is lower than the ones using sp(3) hybridization due to strong differences in the coupling of the conducting orbitals with the gold leads.

8.
Chemistry ; 22(36): 12808-18, 2016 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-27458818

RESUMEN

We studied the electronic and conductance properties of two thiophene-curcuminoid molecules, 2-thphCCM (1) and 3-thphCCM (2), in which the only structural difference is the position of the sulfur atoms in the thiophene terminal groups. We used electrochemical techniques as well as UV/Vis absorption studies to obtain the values of the HOMO-LUMO band gap energies, showing that molecule 1 has lower values than 2. Theoretical calculations show the same trend. Self-assembled monolayers (SAMs) of these molecules were studied by using electrochemistry, showing that the interaction with gold reduces drastically the HOMO-LUMO gap in both molecules to almost the same value. Single-molecule conductance measurements show that molecule 2 has two different conductance values, whereas molecule 1 exhibits only one. Based on theoretical calculations, we conclude that the lowest conductance value, similar in both molecules, corresponds to a van der Waals interaction between the thiophene ring and the electrodes. The one order of magnitude higher conductance value for molecule 2 corresponds to a coordinate (dative covalent) interaction between the sulfur atoms and the gold electrodes.


Asunto(s)
Curcumina/química , Electroquímica/métodos , Oro/química , Tiofenos/química , Estructura Molecular , Nanotecnología
9.
Org Biomol Chem ; 14(8): 2439-43, 2016 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-26809645

RESUMEN

We have described the synthesis of novel biphenylethane-based wires for molecular electronics. Exceptional single-molecule diode behavior was predicted for unsymmetrically substituted biphenylethane derivatives, synthesized here using the so far unexplored unsymmetrically substituted 1,2-bis(4-bromophenyl)ethanes as key intermediates, which were obtained from the corresponding tolane precursor by selective hydrogenation.

10.
Chem Soc Rev ; 44(4): 902-19, 2015 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-25310767

RESUMEN

The use of a gate electrode allows us to gain deeper insight into the electronic structure of molecular junctions. It is widely used for spectroscopy of the molecular levels and its excited states, for changing the charge state of the molecule and investigating higher order processes such as co-tunneling and the Kondo effect. Gate electrodes have been implemented in several types of nanoscale devices such as electromigration junctions, mechanically controllable break junctions, and devices with carbon-based electrodes. Here we review the state-of-the-art in the field of single-molecule transitors. We discuss the experimental challenges and describe the advances made for the different approaches.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA