Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microsc Microanal ; 27(4): 794-803, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34169813

RESUMEN

High-throughput grain mapping with sub-nanometer spatial resolution is demonstrated using scanning nanobeam electron diffraction (also known as 4D scanning transmission electron microscopy, or 4D-STEM) combined with high-speed direct-electron detection. An electron probe size down to 0.5 nm in diameter is used and the sample investigated is a gold­palladium nanoparticle catalyst. Computational analysis of the 4D-STEM data sets is performed using a disk registration algorithm to identify the diffraction peaks followed by feature learning to map the individual grains. Two unsupervised feature learning techniques are compared: principal component analysis (PCA) and non-negative matrix factorization (NNMF). The characteristics of the PCA versus NNMF output are compared and the potential of the 4D-STEM approach for statistical analysis of grain orientations at high spatial resolution is discussed.

2.
Rev Sci Instrum ; 92(6): 063305, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34243572

RESUMEN

Associated particle imaging (API) is a non-destructive nuclear technique for the 3D determination of isotopic distributions. By detecting the alpha particle associated with the emitted neutron in the deuterium-tritium fusion reaction with a position- and time-resolving detector, the direction of the 14.1 MeV neutron and its time of emission can be determined. Employing this method, isotope characteristic gamma rays emitted in inelastic neutron scattering events can be correlated with the neutron interaction location. An API system consisting of a sealed-type neutron generator, gamma detectors, and a position-sensitive alpha detector was designed, constructed, and characterized. The system was tested with common soil elements and shown to be sensitive to 12C, 16O, 28Si, 27Al, and 56Fe. New aspects of our approach are the use of a yttrium-aluminum-perovskite scintillator, using a sapphire window instead of a fiber-optic faceplate for light transport to the photomultiplier, and the all-digital data acquisition system. We present a description of the system with simulations and experimental results that show a position resolution on the alpha detector of 1 mm, a depth resolution using a LaBr3 detector of 6.2 cm, and an angular resolution of 4.5°. Additionally, we present single-element gamma response measurements for the elements mentioned above together with a comparison to Monte Carlo simulations (MCNP6).

4.
Rev Sci Instrum ; 83(2): 02B312, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22380291

RESUMEN

Field ionization as a means to create ions for compact and rugged neutron sources is pursued. Arrays of carbon nano-fibers promise the high field-enhancement factors required for efficient field ionization. We report on the fabrication of arrays of field emitters with a density up to 10(6) tips∕cm(2) and measure their performance characteristics using electron field emission. The critical issue of uniformity is discussed, as are efforts towards coating the nano-fibers to enhance their lifetime and surface properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA