Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Alzheimers Dement ; 14(10): 1261-1280, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30036493

RESUMEN

INTRODUCTION: Tauopathies are neurodegenerative diseases characterized by TAU protein-related pathology, including frontotemporal dementia and Alzheimer's disease among others. Mutant TAU animal models are available, but none of them faithfully recapitulates human pathology and are not suitable for drug screening. METHODS: To create a new in vitro tauopathy model, we generated a footprint-free triple MAPT-mutant human induced pluripotent stem cell line (N279K, P301L, and E10+16 mutations) using clustered regularly interspaced short palindromic repeats-FokI and piggyBac transposase technology. RESULTS: Mutant neurons expressed pathogenic 4R and phosphorylated TAU, endogenously triggered TAU aggregation, and had increased electrophysiological activity. TAU-mutant cells presented deficiencies in neurite outgrowth, aberrant sequence of differentiation to cortical neurons, and a significant activation of stress response pathways. RNA sequencing confirmed stress activation, demonstrated a shift toward GABAergic identity, and an upregulation of neurodegenerative pathways. DISCUSSION: In summary, we generated a novel in vitro human induced pluripotent stem cell TAU-mutant model displaying neurodegenerative disease phenotypes that could be used for disease modeling and drug screening.


Asunto(s)
Células Madre Pluripotentes Inducidas/metabolismo , Tauopatías/metabolismo , Proteínas tau/metabolismo , Sistemas CRISPR-Cas , Línea Celular , Humanos , Células Madre Pluripotentes Inducidas/patología , Potenciales de la Membrana/fisiología , Mutación , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Neurogénesis/fisiología , Proyección Neuronal/fisiología , Neuronas/metabolismo , Neuronas/patología , Fenotipo , Tauopatías/genética , Tauopatías/patología , Transcriptoma , Proteínas tau/genética
2.
Mol Neurodegener ; 19(1): 7, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245794

RESUMEN

Parkinson's Disease (PD) is the second most common neurodegenerative disorder. The pathological hallmark of PD is loss of dopaminergic neurons and the presence of aggregated α-synuclein, primarily in the substantia nigra pars compacta (SNpc) of the midbrain. However, the molecular mechanisms that underlie the pathology in different cell types is not currently understood. Here, we present a single nucleus transcriptome analysis of human post-mortem SNpc obtained from 15 sporadic Parkinson's Disease (PD) cases and 14 Controls. Our dataset comprises ∼84K nuclei, representing all major cell types of the brain, allowing us to obtain a transcriptome-level characterization of these cell types. Importantly, we identify multiple subpopulations for each cell type and describe specific gene sets that provide insights into the differing roles of these subpopulations. Our findings reveal a significant decrease in neuronal cells in PD samples, accompanied by an increase in glial cells and T cells. Subpopulation analyses demonstrate a significant depletion of tyrosine hydroxylase (TH) enriched astrocyte, microglia and oligodendrocyte populations in PD samples, as well as TH enriched neurons, which are also depleted. Moreover, marker gene analysis of the depleted subpopulations identified 28 overlapping genes, including those associated with dopamine metabolism (e.g., ALDH1A1, SLC6A3 & SLC18A2). Overall, our study provides a valuable resource for understanding the molecular mechanisms involved in dopaminergic neuron degeneration and glial responses in PD, highlighting the existence of novel subpopulations and cell type-specific gene sets.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , Mesencéfalo/patología , Neuronas Dopaminérgicas/metabolismo , Sustancia Negra/patología
3.
Stem Cell Res ; 54: 102386, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34229210

RESUMEN

Neurogenin 2 encodes a neural-specific transcription factor (NGN2) able to drive neuronal fate on somatic and stem cells. NGN2 is expressed in neural progenitors within the developing central and peripheral nervous systems. Overexpression of NGN2 in human induced pluripotent stem cells (hiPSCs) or human embryonic stem cells has been shown to efficiently trigger conversion to neurons. Here we describe two gene-edited hiPSC lines harbouring a doxycycline (DOX)-inducible cassette in the AAVS1 locus driving expression of NGN2 (BIONi010-C-13) or NGN2-T2A-GFP (BIONi010-C-15). By introducing NGN2-expressing cassette, we reduce variability associated with conventional over-expression methods such as viral transduction, making these lines amenable for scale-up production and screening processes. DOX-treated hiPSCs convert to neural phenotype within one week and display the expression of structural neuronal markers such as Beta-III tubulin and tau. We performed functional characterization of NGN2-neurons co-cultured with hiPSC-derived astrocytes in a "fully-humanized" set up. Passive properties of NGN2-neurons were indistinguishable from mouse primary cells while displaying variable activity in extracellular recordings performed in multi-electrode arrays (MEAs). We demonstrate that hiPSC-derived astrocytes and neurons can be co-cultured and display functional properties comparable to the gold standard used in electrophysiology. Both lines are globally available via EBiSC repository at https://cells.ebisc.org/.


Asunto(s)
Células Madre Pluripotentes Inducidas , Animales , Astrocitos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular , Células Cultivadas , Técnicas de Cocultivo , Humanos , Ratones , Neuronas
4.
Neuroinformatics ; 19(4): 737-750, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34374965

RESUMEN

Synaptic dysfunction is a hallmark of various neurodegenerative and neurodevelopmental disorders. To interrogate synapse function in a systematic manner, we have established an automated high-throughput imaging pipeline based on fluorescence microscopy acquisition and image analysis of electrically stimulated synaptic transmission in neuronal cultures. Identification and measurement of synaptic signal fluctuations is achieved by means of an image analysis algorithm based on singular value decomposition. By exploiting the synchronicity of the evoked responses, the algorithm allows disentangling distinct temporally correlated patterns of firing synapse populations or cell types that are present in the same recording. We demonstrate the performance of the analysis with a pilot compound screen and show that the multiparametric readout allows classifying treatments by their spatiotemporal fingerprint. The image analysis and visualization software has been made publicly available on Github ( https://www.github.com/S3Toolbox ). The streamlined automation of multi-well image acquisition, electrical stimulation, analysis, and meta-data warehousing facilitates large-scale synapse-oriented screens and, in doing so, it will accelerate the drug discovery process.


Asunto(s)
Neuronas , Sinapsis , Algoritmos , Procesamiento de Imagen Asistido por Computador , Programas Informáticos
5.
Brain Sci ; 10(3)2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-32183137

RESUMEN

Astrocytes are ubiquitous in the central nervous system (CNS). These cells possess thousands of individual processes, which extend out into the neuropil, interacting with neurons, other glia and blood vessels. Paralleling the wide diversity of their interactions, astrocytes have been reported to play key roles in supporting CNS structure, metabolism, blood-brain-barrier formation and control of vascular blood flow, axon guidance, synapse formation and modulation of synaptic transmission. Traditionally, astrocytes have been studied as a homogenous group of cells. However, recent studies have uncovered a surprising degree of heterogeneity in their development and function, in both the healthy and diseased brain. A better understanding of astrocyte heterogeneity is urgently needed to understand normal brain function, as well as the role of astrocytes in response to injury and disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA