Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Mol Cell Proteomics ; 23(4): 100742, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38401707

RESUMEN

Therapeutic RNAs are routinely modified during their synthesis to ensure proper drug uptake, stability, and efficacy. Phosphorothioate (PS) RNA, molecules in which one or more backbone phosphates are modified with a sulfur atom in place of standard nonbridging oxygen, is one of the most common modifications because of ease of synthesis and pharmacokinetic benefits. Quality assessment of RNA synthesis, including modification incorporation, is essential for drug selectivity and performance, and the synthetic nature of the PS linkage incorporation often reveals impurities. Here, we present a comprehensive analysis of PS RNA via tandem mass spectrometry (MS). We show that activated ion-negative electron transfer dissociation MS/MS is especially useful in diagnosing PS incorporation, producing diagnostic a- and z-type ions at PS linkage sites, beyond the standard d- and w-type ions. Analysis using resonant and beam-type collision-based activation reveals that, overall, more intense sequence ions and base-loss ions result when a PS modification is present. Furthermore, we report increased detection of b- and x-type product ions at sites of PS incorporation, in addition to the standard c- and y-type ions. This work reveals that the gas-phase chemical stability afforded by sulfur alters RNA dissociation and necessitates inclusion of additional product ions for MS/MS of PS RNA.


Asunto(s)
ARN , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , ARN/metabolismo , Oligonucleótidos Fosforotioatos/química
2.
Mol Cell Proteomics ; 23(5): 100760, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38579929

RESUMEN

We describe deep analysis of the human proteome in less than 1 h. We achieve this expedited proteome characterization by leveraging state-of-the-art sample preparation, chromatographic separations, and data analysis tools, and by using the new Orbitrap Astral mass spectrometer equipped with a quadrupole mass filter, a high-field Orbitrap mass analyzer, and an asymmetric track lossless (Astral) mass analyzer. The system offers high tandem mass spectrometry acquisition speed of 200 Hz and detects hundreds of peptide sequences per second within data-independent acquisition or data-dependent acquisition modes of operation. The fast-switching capabilities of the new quadrupole complement the sensitivity and fast ion scanning of the Astral analyzer to enable narrow-bin data-independent analysis methods. Over a 30-min active chromatographic method consuming a total analysis time of 56 min, the Q-Orbitrap-Astral hybrid MS collects an average of 4319 MS1 scans and 438,062 tandem mass spectrometry scans per run, producing 235,916 peptide sequences (1% false discovery rate). On average, each 30-min analysis achieved detection of 10,411 protein groups (1% false discovery rate). We conclude, with these results and alongside other recent reports, that the 1-h human proteome is within reach.


Asunto(s)
Proteoma , Proteómica , Espectrometría de Masas en Tándem , Humanos , Proteoma/análisis , Proteómica/métodos , Factores de Tiempo
3.
J Proteome Res ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713017

RESUMEN

Single-cell proteomics is a powerful approach to precisely profile protein landscapes within individual cells toward a comprehensive understanding of proteomic functions and tissue and cellular states. The inherent challenges associated with limited starting material demand heightened analytical sensitivity. Just as advances in sample preparation maximize the amount of material that makes it from the cell to the mass spectrometer, we strive to maximize the number of ions that make it from ion source to the detector. In isobaric tagging experiments, limited reporter ion generation limits quantitative accuracy and precision. The combination of infrared photoactivation and ion parking circumvents the m/z dependence inherent in HCD, maximizing reporter generation and avoiding unintended degradation of TMT reporter molecules in infrared-tandem mass tags (IR-TMT). The method was applied to single-cell human proteomes using 18-plex TMTpro, resulting in 4-5-fold increases in reporter signal compared to conventional SPS-MS3 approaches. IR-TMT enables faster duty cycles, higher throughput, and increased peptide identification and quantification. Comparative experiments showcase 4-5-fold lower injection times for IR-TMT, providing superior sensitivity without compromising accuracy. In all, IR-TMT enhances the dynamic range of proteomic experiments and is compatible with gas-phase fractionation and real-time searching, promising increased gains in the study of cellular heterogeneity.

4.
J Am Chem Soc ; 146(17): 12138-12154, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38635392

RESUMEN

Protein lipidation dynamically controls protein localization and function within cellular membranes. A unique form of protein O-fatty acylation in Corynebacterium, termed protein O-mycoloylation, involves the attachment of mycolic acids─unusually large and hydrophobic fatty acids─to serine residues of proteins in these organisms' outer mycomembrane. However, as with other forms of protein lipidation, the scope and functional consequences of protein O-mycoloylation are challenging to investigate due to the inherent difficulties of enriching and analyzing lipidated peptides. To facilitate the analysis of protein lipidation and enable the comprehensive profiling and site mapping of protein O-mycoloylation, we developed a chemical proteomics strategy integrating metabolic labeling, click chemistry, cleavable linkers, and a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method employing LC separation and complementary fragmentation methods tailored to the analysis of lipophilic, MS-labile O-acylated peptides. Using these tools in the model organism Corynebacterium glutamicum, we identified approximately 30 candidate O-mycoloylated proteins, including porins, mycoloyltransferases, secreted hydrolases, and other proteins with cell envelope-related functions─consistent with a role for O-mycoloylation in targeting proteins to the mycomembrane. Site mapping revealed that many of the proteins contained multiple spatially proximal modification sites, which occurred predominantly at serine residues surrounded by conformationally flexible peptide motifs. Overall, this study (i) discloses the putative protein O-mycoloylome for the first time, (ii) yields new insights into the undercharacterized proteome of the mycomembrane, which is a hallmark of important pathogens (e.g., Corynebacterium diphtheriae, Mycobacterium tuberculosis), and (iii) provides generally applicable chemical strategies for the proteomic analysis of protein lipidation.


Asunto(s)
Proteínas Bacterianas , Corynebacterium glutamicum , Proteómica , Proteómica/métodos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/química , Ácidos Micólicos/metabolismo , Ácidos Micólicos/química , Espectrometría de Masas en Tándem , Cromatografía Liquida , Acilación , Química Clic
5.
Anal Chem ; 95(28): 10655-10663, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37389810

RESUMEN

Mass spectrometry (MS)-based proteomics is a powerful technology to globally profile protein abundances, activities, interactions, and modifications. The extreme complexity of proteomics samples, which often contain hundreds of thousands of analytes, necessitates continuous development of MS techniques and instrumentation to improve speed, sensitivity, precision, and accuracy, among other analytical characteristics. Here, we systematically evaluated the Orbitrap Ascend Tribrid mass spectrometer in the context of shotgun proteomics, and we compared its performance to that of the previous generation of Tribrid instruments─the Orbitrap Eclipse. The updated architecture of the Orbitrap Ascend includes a second ion-routing multipole (IRM) in front of the redesigned C-trap/Orbitrap and a new ion funnel that allows gentler ion introduction, among other changes. These modifications in Ascend hardware configuration enabled an increase in parallelizable ion injection time during higher-energy collisional dissociation (HCD) Orbitrap tandem MS (FTMS2) analysis of ∼5 ms. This enhancement was particularly valuable in the analyses of limited sample amounts, where improvements in sensitivity resulted in up to 140% increase in the number of identified tryptic peptides. Further, analysis of phosphorylated peptides enriched from the K562 human cell line yielded up to ∼50% increase in the number of unique phosphopeptides and localized phosphosites. Strikingly, we also observed a ∼2-fold boost in the number of detected N-glycopeptides, likely owing to the improvements in ion transmission and sensitivity. In addition, we performed the multiplexed quantitative proteomics analyses of TMT11-plex labeled HEK293T tryptic peptides and observed 9-14% increase in the number of quantified peptides. In conclusion, the Orbitrap Ascend consistently outperformed its predecessor the Orbitrap Eclipse in various bottom-up proteomic analyses, and we anticipate that it will generate reproducible and in-depth datasets for numerous proteomic applications.


Asunto(s)
Proteínas , Proteómica , Humanos , Proteómica/métodos , Células HEK293 , Proteínas/química , Espectrometría de Masas en Tándem/métodos , Fosfopéptidos
6.
Bioconjug Chem ; 34(8): 1380-1386, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37540561

RESUMEN

Aldehydes are important synthons for DNA-encoded library (DEL) construction, but the development of a DNA-compatible method for the oxidation of alcohols to aldehydes remains a significant challenge in the field of DEL chemistry. We report that a copper/TEMPO catalyst system enables the solution-phase DNA-compatible oxidation of DNA-linked primary activated alcohols to aldehydes. The semiaqueous, room-temperature reaction conditions afford oxidation of benzylic, heterobenzylic, and allylic alcohols in high yield, with DNA compatibility verified by mass spectrometry, qPCR, Sanger sequencing, and ligation assays. Subsequent transformations of the resulting aldehydes demonstrate the potential of this method for robust library diversification.


Asunto(s)
Cobre , Óxidos N-Cíclicos , Cobre/química , Óxidos N-Cíclicos/química , Estructura Molecular , Alcoholes/química , Aldehídos/química , Oxidación-Reducción , Catálisis
7.
Anal Chem ; 94(7): 3328-3334, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35142486

RESUMEN

Isobaric tagging facilitates multiplexed experiments that can determine sequences and relative amounts of peptides in biological samples using tandem mass spectrometry (MSn). Limited reporter ion generation limits quantitative accuracy and precision. As reporter ions are susceptible to unintended fragmentation and scattering by high-energy collisions, we activated peptides with IR photons and prevented successive dissociation of generated reporter ions with ion parking, which altogether boosted reporter ion yield by up to 55%. Even so, unintended co-isolation of contaminating peaks in MS2 experiments distorts reporter ion intensities and can distort quantitative information. MS3 experiments address contamination by generating reporter ions via collisional activation (HCD) of one or more peptide product ions rather than the isolated peptide precursor ion. Because HCD performance is related to m/z, activation of multiple synchronously isolated product ions generates less than optimal reporter ion intensities. In this work, we show that using infrared multiphoton dissociation, which is not dependent on m/z, to generate reporter ions from 10 synchronously isolated peptide product ions results in a 2.4-fold increase in reporter ion intensities, significantly enhancing the sensitivity and dynamic range of quantitation via isobaric tagging.


Asunto(s)
Péptidos , Espectrometría de Masas en Tándem , Indicadores y Reactivos , Iones , Péptidos/química , Espectrometría de Masas en Tándem/métodos
8.
J Proteome Res ; 20(4): 1972-1980, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33325715

RESUMEN

Shotgun proteomics techniques infer the presence and quantity of proteins using peptide proxies produced by cleavage of the proteome with a protease. Most protein quantitation strategies assume that multiple peptides derived from a protein will behave quantitatively similar across treatment groups, but this assumption may be false due to (1) heterogeneous proteoforms and (2) technical artifacts. Here we describe a strategy called peptide correlation analysis (PeCorA) that detects quantitative disagreements between peptides mapped to the same protein. PeCorA fits linear models to assess whether a peptide's change across treatment groups differs from all other peptides assigned to the same protein. PeCorA revealed that ∼15% of proteins in a mouse microglia stress data set contain at least one discordant peptide. Inspection of the discordant peptides shows the utility of PeCorA for the direct and indirect detection of regulated post-translational modifications (PTMs) and also for the discovery of poorly quantified peptides. The exclusion of poorly quantified peptides before protein quantity summarization decreased false-positives in a benchmark data set. Finally, PeCorA suggests that the inactive isoform of prothrombin, a coagulation cascade protease, is more abundant in plasma from COVID-19 patients relative to non-COVID-19 controls. PeCorA is freely available as an R package that works with arbitrary tables of quantified peptides.


Asunto(s)
Péptidos/análisis , Proteómica , Animales , COVID-19/sangre , Humanos , Ratones , Microglía , Procesamiento Proteico-Postraduccional , Proteoma , Protrombina/análisis
9.
J Am Chem Soc ; 143(50): 21402-21409, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34898209

RESUMEN

We report DNA-scaffolded synergistic catalysis, a concept that combines the diverse reaction scope of synergistic catalysis with the ability of DNA to precisely preorganize abiotic groups and undergo stimuli-triggered conformational changes. As an initial demonstration of this concept, we focus on Cu-TEMPO-catalyzed aerobic alcohol oxidation, using DNA as a scaffold to hold a copper cocatalyst and an organic radical cocatalyst (TEMPO) in proximity. The DNA-scaffolded catalyst maintained a high turnover number upon dilution and exhibited 190-fold improvement in catalyst turnover number relative to the unscaffolded cocatalysts. By incorporating the cocatalysts into a DNA hairpin-containing scaffold, we demonstrate that the rate of the synergistic catalytic reaction can be controlled through a reversible DNA conformational change that alters the distance between the cocatalysts. This work demonstrates the compatibility of synergistic catalytic reactions with DNA scaffolding, opening future avenues in reaction discovery, sensing, responsive materials, and chemical biology.


Asunto(s)
Cobre/química , ADN/química , Alcoholes/química , Catálisis , Óxidos N-Cíclicos/química , Oxidación-Reducción
10.
Anal Chem ; 92(18): 12363-12370, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32786458

RESUMEN

Photoactivation and photodissociation have long proven to be useful tools in tandem mass spectrometry, but implementation often involves cumbersome and potentially dangerous configurations. Here, we redress this problem by using a fiber-optic cable to couple an infrared (IR) laser to a mass spectrometer for robust, efficient, and safe photoactivation experiments. Transmitting 10.6 µm IR photons through a hollow-core fiber, we show that such fiber-assisted activated ion-electron transfer dissociation (AI-ETD) and IR multiphoton dissociation (IRMPD) experiments can be carried out as effectively as traditional mirror-based implementations. We report on the transmission efficiency of the hollow-core fiber for conducting photoactivation experiments and perform various intact protein and peptide analyses to illustrate the benefits of fiber-assisted AI-ETD, namely, a simplified system for irradiating the two-dimensional linear ion trap volume concurrent with ETD reactions to limit uninformative nondissociative events and thereby amplify sequence coverage. We also describe a calibration scheme for the routine analysis of IR laser alignment and power through the fiber and into the dual cell quadrupolar linear ion trap. In all, these advances allow for a more robust, straightforward, and safe instrumentation platform, permitting implementation of AI-ETD and IRMPD on commercial mass spectrometers and broadening the accessibility of these techniques.


Asunto(s)
Mioglobina/análisis , Fibras Ópticas , Péptidos/análisis , Ubiquitina/análisis , Animales , Calibración , Bovinos , Caballos , Rayos Láser , Espectrometría de Masas , Procesos Fotoquímicos
11.
Anal Chem ; 92(6): 4436-4444, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32091202

RESUMEN

Modified oligonucleotides represent a promising avenue for drug development, with small interfering RNAs (siRNA) and microRNAs gaining traction in the therapeutic market. Mass spectrometry (MS)-based analysis offers many benefits for characterizing modified nucleic acids. Negative electron transfer dissociation (NETD) has proven valuable in sequencing oligonucleotide anions, particularly because it can retain modifications while generating sequence-informative fragments. We show that NETD can be successfully implemented on a widely available quadrupole-Orbitrap-linear ion trap mass spectrometer that uses a front-end glow discharge source to generate radical fluoranthene reagent cations. We characterize both unmodified and modified ribonucleic acids and present the first application of activated-ion negative electron transfer dissociation (AI-NETD) to nucleic acids. AI-NETD achieved 100% sequence coverage for both a 6-mer (5'-rGmUrArCmUrG-3') with 2'-O-methyl modifications and a 21-mer (5'-rCrArUrCrCrUrCrUrArGrArGrGrArUrArGrArArUrG-3'), the luciferase antisense siRNA. Both NETD and AI-NETD afforded complete sequence coverage of these molecules while maintaining a relatively low degree of undesired base-loss products and internal products relative to collision-based methods.


Asunto(s)
MicroARNs/análisis , ARN Interferente Pequeño/análisis , Secuencia de Aminoácidos , Transporte de Electrón , Espectrometría de Masas
12.
13.
Cell Rep ; 42(4): 112368, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37036808

RESUMEN

At mammalian neuronal synapses, synaptic vesicle (SV) glycoproteins are essential for robust neurotransmission. Asparagine (N)-linked glycosylation is required for delivery of the major SV glycoproteins synaptophysin and SV2A to SVs. Despite this key role for N-glycosylation, the molecular compositions of SV N-glycans are largely unknown. In this study, we combined organelle isolation techniques and high-resolution mass spectrometry to characterize N-glycosylation at synapses and SVs from mouse brain. Detecting over 2,500 unique glycopeptides, we found that SVs harbor a distinct population of oligomannose and highly fucosylated N-glycans. Using complementary fluorescence methods, we identify at least one highly fucosylated N-glycan enriched in SVs compared with synaptosomes. High fucosylation was characteristic of SV proteins, plasma membrane proteins, and cell adhesion molecules with key roles in synaptic function and development. Our results define the N-glycoproteome of a specialized neuronal organelle and inform timely questions in the glycobiology of synaptic pruning and neuroinflammation.


Asunto(s)
Sinapsis , Vesículas Sinápticas , Ratones , Animales , Vesículas Sinápticas/metabolismo , Sinapsis/metabolismo , Glicoproteínas/metabolismo , Encéfalo/metabolismo , Polisacáridos/metabolismo , Mamíferos/metabolismo
14.
bioRxiv ; 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38045259

RESUMEN

Owing to its roles in cellular signal transduction, protein phosphorylation plays critical roles in myriad cell processes. That said, detecting and quantifying protein phosphorylation has remained a challenge. We describe the use of a novel mass spectrometer (Orbitrap Astral) coupled with data-independent acquisition (DIA) to achieve rapid and deep analysis of human and mouse phosphoproteomes. With this method we map approximately 30,000 unique human phosphorylation sites within a half-hour of data collection. We applied this approach to generate a phosphoproteome multi-tissue atlas of the mouse. Altogether, we detected 81,120 unique phosphorylation sites within 12 hours of measurement. With this unique dataset, we examine the sequence and structural context of protein phosphorylation. Finally, we highlight the discovery potential of this resource with multiple examples of novel phosphorylation events relevant to mitochondrial and brain biology.

15.
ArXiv ; 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38013887

RESUMEN

Proteomics is the large scale study of protein structure and function from biological systems through protein identification and quantification. "Shotgun proteomics" or "bottom-up proteomics" is the prevailing strategy, in which proteins are hydrolyzed into peptides that are analyzed by mass spectrometry. Proteomics studies can be applied to diverse studies ranging from simple protein identification to studies of proteoforms, protein-protein interactions, protein structural alterations, absolute and relative protein quantification, post-translational modifications, and protein stability. To enable this range of different experiments, there are diverse strategies for proteome analysis. The nuances of how proteomic workflows differ may be challenging to understand for new practitioners. Here, we provide a comprehensive overview of different proteomics methods to aid the novice and experienced researcher. We cover from biochemistry basics and protein extraction to biological interpretation and orthogonal validation. We expect this work to serve as a basic resource for new practitioners in the field of shotgun or bottom-up proteomics.

16.
J Am Soc Mass Spectrom ; 33(1): 100-110, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34874726

RESUMEN

Ion-ion reactions are valuable tools in mass-spectrometry-based peptide and protein sequencing. To boost the generation of sequence-informative fragment ions from low charge-density precursors, supplemental activation methods, via vibrational and photoactivation, have become widely adopted. However, long-lived radical peptide cations undergo intramolecular hydrogen atom transfer from c-type ions to z•-type ions. Here we investigate the degree of hydrogen transfer for thousands of unique peptide cations where electron transfer dissociation (ETD) was performed and was followed by beam-type collisional activation (EThcD), resonant collisional activation (ETcaD), or concurrent infrared photoirradiation (AI-ETD). We report on the precursor charge density and the local amino acid environment surrounding bond cleavage to illustrate the effects of intramolecular hydrogen atom transfer for various precursor ions. Over 30% of fragments from EThcD spectra comprise distorted isotopic distributions, whereas over 20% of fragments from ETcaD have distorted distributions and less than 15% of fragments derived from ETD and AI-ETD reveal distorted isotopic distributions. Both ETcaD and EThcD give a relatively high degree of hydrogen migration, especially when D, G, N, S, and T residues were directly C-terminal to the cleavage site. Whereas all postactivation methods boost the number of c- and z•-type fragment ions detected, the collision-based approaches produce higher rates of hydrogen migration, yielding fewer spectral identifications when only c- and z•-type ions are considered. Understanding hydrogen rearrangement between c- and z•-type ions will facilitate better spectral interpretation.


Asunto(s)
Electrones , Hidrógeno/química , Proteínas/química , Proteómica/métodos , Línea Celular , Cromatografía Liquida , Humanos , Fragmentos de Péptidos/análisis , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Proteínas/análisis , Proteínas/metabolismo , Espectrometría de Masas en Tándem
17.
Cell Syst ; 12(1): 23-40.e7, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33096026

RESUMEN

We performed RNA-seq and high-resolution mass spectrometry on 128 blood samples from COVID-19-positive and COVID-19-negative patients with diverse disease severities and outcomes. Quantified transcripts, proteins, metabolites, and lipids were associated with clinical outcomes in a curated relational database, uniquely enabling systems analysis and cross-ome correlations to molecules and patient prognoses. We mapped 219 molecular features with high significance to COVID-19 status and severity, many of which were involved in complement activation, dysregulated lipid transport, and neutrophil activation. We identified sets of covarying molecules, e.g., protein gelsolin and metabolite citrate or plasmalogens and apolipoproteins, offering pathophysiological insights and therapeutic suggestions. The observed dysregulation of platelet function, blood coagulation, acute phase response, and endotheliopathy further illuminated the unique COVID-19 phenotype. We present a web-based tool (covid-omics.app) enabling interactive exploration of our compendium and illustrate its utility through a machine learning approach for prediction of COVID-19 severity.


Asunto(s)
COVID-19/sangre , COVID-19/genética , Aprendizaje Automático , Análisis de Secuencia de ARN/métodos , Índice de Severidad de la Enfermedad , Anciano , Anciano de 80 o más Años , COVID-19/terapia , Estudios de Cohortes , Femenino , Gelsolina/sangre , Gelsolina/genética , Humanos , Mediadores de Inflamación/sangre , Masculino , Persona de Mediana Edad , Neutrófilos/metabolismo , Análisis de Componente Principal/métodos
18.
medRxiv ; 2020 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-32743614

RESUMEN

We performed RNA-Seq and high-resolution mass spectrometry on 128 blood samples from COVID-19 positive and negative patients with diverse disease severities. Over 17,000 transcripts, proteins, metabolites, and lipids were quantified and associated with clinical outcomes in a curated relational database, uniquely enabling systems analysis and cross-ome correlations to molecules and patient prognoses. We mapped 219 molecular features with high significance to COVID-19 status and severity, many involved in complement activation, dysregulated lipid transport, and neutrophil activation. We identified sets of covarying molecules, e.g., protein gelsolin and metabolite citrate or plasmalogens and apolipoproteins, offering pathophysiological insights and therapeutic suggestions. The observed dysregulation of platelet function, blood coagulation, acute phase response, and endotheliopathy further illuminated the unique COVID-19 phenotype. We present a web-based tool (covid-omics.app) enabling interactive exploration of our compendium and illustrate its utility through a comparative analysis with published data and a machine learning approach for prediction of COVID-19 severity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA