Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Genet ; 17(4): e1009479, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33857132

RESUMEN

Optogenetics has been harnessed to shed new mechanistic light on current and future therapeutic strategies. This has been to date achieved by the regulation of ion flow and electrical signals in neuronal cells and neural circuits that are known to be affected by disease. In contrast, the optogenetic delivery of trophic biochemical signals, which support cell survival and are implicated in degenerative disorders, has never been demonstrated in an animal model of disease. Here, we reengineered the human and Drosophila melanogaster REarranged during Transfection (hRET and dRET) receptors to be activated by light, creating one-component optogenetic tools termed Opto-hRET and Opto-dRET. Upon blue light stimulation, these receptors robustly induced the MAPK/ERK proliferative signaling pathway in cultured cells. In PINK1B9 flies that exhibit loss of PTEN-induced putative kinase 1 (PINK1), a kinase associated with familial Parkinson's disease (PD), light activation of Opto-dRET suppressed mitochondrial defects, tissue degeneration and behavioral deficits. In human cells with PINK1 loss-of-function, mitochondrial fragmentation was rescued using Opto-dRET via the PI3K/NF-кB pathway. Our results demonstrate that a light-activated receptor can ameliorate disease hallmarks in a genetic model of PD. The optogenetic delivery of trophic signals is cell type-specific and reversible and thus has the potential to inspire novel strategies towards a spatio-temporal regulation of tissue repair.


Asunto(s)
Proteínas de Drosophila/genética , Mitocondrias/genética , Neuronas/metabolismo , Enfermedad de Parkinson/genética , Proteínas Serina-Treonina Quinasas/genética , Animales , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Humanos , Luz , Mutación con Pérdida de Función/genética , Mitocondrias/efectos de la radiación , Neuronas/patología , Neuronas/efectos de la radiación , Optogenética/métodos , Enfermedad de Parkinson/patología , Fosfatidilinositol 3-Quinasas/genética , Retina/crecimiento & desarrollo , Retina/metabolismo , Transducción de Señal/genética , Transfección
2.
J Neurosci ; 40(9): 1819-1833, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-31964717

RESUMEN

Dendritic arborization is highly regulated and requires tight control of dendritic growth, branching, cytoskeletal dynamics, and ion channel expression to ensure proper function. Abnormal dendritic development can result in altered network connectivity, which has been linked to neurodevelopmental disorders, including autism spectrum disorders (ASDs). How neuronal growth control programs tune dendritic arborization to ensure function is still not fully understood. Using Drosophila dendritic arborization (da) neurons as a model, we identified the conserved Ste20-like kinase Tao as a negative regulator of dendritic arborization. We show that Tao kinase activity regulates cytoskeletal dynamics and sensory channel localization required for proper sensory function in both male and female flies. We further provide evidence for functional conservation of Tao kinase, showing that its ASD-linked human ortholog, Tao kinase 2 (Taok2), could replace Drosophila Tao and rescue dendritic branching, dynamic microtubule alterations, and behavioral defects. However, several ASD-linked Taok2 variants displayed impaired rescue activity, suggesting that Tao/Taok2 mutations can disrupt sensory neuron development and function. Consistently, we show that Tao kinase activity is required in developing and as well as adult stages for maintaining normal dendritic arborization and sensory function to regulate escape and social behavior. Our data suggest an important role for Tao kinase signaling in cytoskeletal organization to maintain proper dendritic arborization and sensory function, providing a strong link between developmental sensory aberrations and behavioral abnormalities relevant for Taok2-dependent ASDs.SIGNIFICANCE STATEMENT Autism spectrum disorders (ASDs) are linked to abnormal dendritic arbors. However, the mechanisms of how dendritic arbors develop to promote functional and proper behavior are unclear. We identified Drosophila Tao kinase, the ortholog of the ASD risk gene Taok2, as a regulator of dendritic arborization in sensory neurons. We show that Tao kinase regulates cytoskeletal dynamics, controls sensory ion channel localization, and is required to maintain somatosensory function in vivo Interestingly, ASD-linked human Taok2 mutations rendered it nonfunctional, whereas its WT form could restore neuronal morphology and function in Drosophila lacking endogenous Tao. Our findings provide evidence for a conserved role of Tao kinase in dendritic development and function of sensory neurons, suggesting that aberrant sensory function might be a common feature of ASDs.


Asunto(s)
Citoesqueleto/fisiología , Dendritas/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/fisiología , Sensación/fisiología , Actinas/metabolismo , Animales , Animales Modificados Genéticamente , Citoesqueleto/ultraestructura , Dendritas/ultraestructura , Drosophila , Reacción de Fuga , Femenino , Humanos , Masculino , Mecanorreceptores/fisiología , Mutación/genética , Conducta Social
3.
J Exp Biol ; 220(Pt 13): 2452-2475, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28679796

RESUMEN

Mapping brain function to brain structure is a fundamental task for neuroscience. For such an endeavour, the Drosophila larva is simple enough to be tractable, yet complex enough to be interesting. It features about 10,000 neurons and is capable of various taxes, kineses and Pavlovian conditioning. All its neurons are currently being mapped into a light-microscopical atlas, and Gal4 strains are being generated to experimentally access neurons one at a time. In addition, an electron microscopic reconstruction of its nervous system seems within reach. Notably, this electron microscope-based connectome is being drafted for a stage 1 larva - because stage 1 larvae are much smaller than stage 3 larvae. However, most behaviour analyses have been performed for stage 3 larvae because their larger size makes them easier to handle and observe. It is therefore warranted to either redo the electron microscopic reconstruction for a stage 3 larva or to survey the behavioural faculties of stage 1 larvae. We provide the latter. In a community-based approach we called the Ol1mpiad, we probed stage 1 Drosophila larvae for free locomotion, feeding, responsiveness to substrate vibration, gentle and nociceptive touch, burrowing, olfactory preference and thermotaxis, light avoidance, gustatory choice of various tastants plus odour-taste associative learning, as well as light/dark-electric shock associative learning. Quantitatively, stage 1 larvae show lower scores in most tasks, arguably because of their smaller size and lower speed. Qualitatively, however, stage 1 larvae perform strikingly similar to stage 3 larvae in almost all cases. These results bolster confidence in mapping brain structure and behaviour across developmental stages.


Asunto(s)
Conducta Animal , Drosophila melanogaster/fisiología , Animales , Encéfalo/citología , Encéfalo/fisiología , Drosophila melanogaster/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/fisiología
4.
Nat Commun ; 10(1): 3506, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31383864

RESUMEN

Sensory circuits are typically established during early development, yet how circuit specificity and function are maintained during organismal growth has not been elucidated. To gain insight we quantitatively investigated synaptic growth and connectivity in the Drosophila nociceptive network during larval development. We show that connectivity between primary nociceptors and their downstream neurons scales with animal size. We further identified the conserved Ste20-like kinase Tao as a negative regulator of synaptic growth required for maintenance of circuit specificity and connectivity. Loss of Tao kinase resulted in exuberant postsynaptic specializations and aberrant connectivity during larval growth. Using functional imaging and behavioral analysis we show that loss of Tao-induced ectopic synapses with inappropriate partner neurons are functional and alter behavioral responses in a connection-specific manner. Our data show that fine-tuning of synaptic growth by Tao kinase is required for maintaining specificity and behavioral output of the neuronal network during animal growth.


Asunto(s)
Comunicación Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Red Nerviosa/metabolismo , Nociceptores/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Animales Modificados Genéticamente , Encéfalo/citología , Encéfalo/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Técnicas de Silenciamiento del Gen , Larva/metabolismo , Modelos Animales , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , Sinapsis/metabolismo
5.
Nat Neurosci ; 22(6): 887-896, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31011226

RESUMEN

Multiple sclerosis (MS) is characterized by inflammatory insults that drive neuroaxonal injury. However, knowledge about neuron-intrinsic responses to inflammation is limited. By leveraging neuron-specific messenger RNA profiling, we found that neuroinflammation leads to induction and toxic accumulation of the synaptic protein bassoon (Bsn) in the neuronal somata of mice and patients with MS. Neuronal overexpression of Bsn in flies resulted in reduction of lifespan, while genetic disruption of Bsn protected mice from inflammation-induced neuroaxonal injury. Notably, pharmacological proteasome activation boosted the clearance of accumulated Bsn and enhanced neuronal survival. Our study demonstrates that neuroinflammation initiates toxic protein accumulation in neuronal somata and advocates proteasome activation as a potential remedy.


Asunto(s)
Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Proteínas del Tejido Nervioso/metabolismo , Animales , Drosophila , Humanos , Inflamación/metabolismo , Inflamación/patología , Ratones , Neuronas/metabolismo , Neuronas/patología , Médula Espinal/metabolismo , Médula Espinal/patología
6.
Bio Protoc ; 8(4): e2736, 2018 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-34179264

RESUMEN

Drosophila melanogaster larvae have been extensively used as a model to study the molecular and cellular basis of nociception. The larval nociceptors, class IV dendritic arborization (C4da) neurons, line the body wall of the animal and respond to various stimuli including noxious heat and touch. Activation of C4da neurons results in a stereotyped escape behavior, characterized by a 360° rolling response along the body axis followed by locomotion speedup. The genetic accessibility of Drosophila has allowed the identification of mechanosensory channels and circuit elements required for nociceptive responses, making it a useful and straightforward readout to understand the cellular and molecular basis of nociceptive function and behavior. We have optimized the protocol to assay mechanonociceptive behavior in Drosophila larvae.

7.
Bio Protoc ; 8(4): e2737, 2018 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-34179265

RESUMEN

Thermo-nociception, the detection and behavioral response to noxious temperatures, is a highly conserved action to avoid injury and ensure survival. Basic molecular mechanisms of thermal responses have been elucidated in several model organisms and are of clinical relevance as thermal hypersensitivity (thermos-allodynia) is common in neuropathic pain syndromes. Drosophila larvae show stereotyped escape behavior upon noxious heat stimulation, which can be easily quantified and coupled with molecular genetic approaches. It has been successfully used to elucidate key molecular components and circuits involved in thermo-nociceptive responses. We provide a detailed and updated protocol of this previously described method ( Tracey et al., 2003 ) to apply a defined local heat stimulus to larvae using a fast-regulating hot probe.

8.
Cell Rep ; 24(9): 2261-2272.e5, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30157422

RESUMEN

Dendrite morphogenesis is a highly regulated process that gives rise to stereotyped receptive fields, which are required for proper neuronal connectivity and function. Specific classes of neurons, including Drosophila class IV dendritic arborization (C4da) neurons, also feature complete space-filling growth of dendrites. In this system, we have identified the substrate-derived TGF-ß ligand maverick (mav) as a developmental signal promoting space-filling growth through the neuronal Ret receptor. Both are necessary for radial spreading of C4da neuron dendrites, and Ret is required for neuronal uptake of Mav. Moreover, local changes in Mav levels result in directed dendritic growth toward regions with higher ligand availability. Our results suggest that Mav acts as a substrate-derived secreted signal promoting dendrite growth within not-yet-covered areas of the receptive field to ensure space-filling dendritic growth.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas Proto-Oncogénicas c-ret/metabolismo , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Dendritas , Drosophila melanogaster
9.
Nat Neurosci ; 20(8): 1085-1095, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28604684

RESUMEN

Nociception is an evolutionarily conserved mechanism to encode and process harmful environmental stimuli. Like most animals, Drosophila melanogaster larvae respond to a variety of nociceptive stimuli, including noxious touch and temperature, with stereotyped escape responses through activation of multimodal nociceptors. How behavioral responses to these different modalities are processed and integrated by the downstream network remains poorly understood. By combining trans-synaptic labeling, ultrastructural analysis, calcium imaging, optogenetics and behavioral analyses, we uncovered a circuit specific for mechanonociception but not thermonociception. Notably, integration of mechanosensory input from innocuous and nociceptive sensory neurons is required for robust mechanonociceptive responses. We further show that neurons integrating mechanosensory input facilitate primary nociceptive output by releasing short neuropeptide F, the Drosophila neuropeptide Y homolog. Our findings unveil how integration of somatosensory input and neuropeptide-mediated modulation can produce robust modality-specific escape behavior.


Asunto(s)
Conducta Animal/fisiología , Drosophila melanogaster/metabolismo , Nociceptores/metabolismo , Células Receptoras Sensoriales/metabolismo , Tacto/fisiología , Animales , Larva/metabolismo , Optogenética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA