Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurophysiol ; 129(3): 685-699, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36791051

RESUMEN

Operant conditioning of a spinal monosynaptic pathway using the Hoffman reflex (H-reflex) is well established in animal and human studies. There is a subset within the human population (∼20% nonresponders) who are unable to up train this pathway suggesting some distinct or unique identifying characteristics. Importantly, females, who have a nine times higher rate of injury during human performance activities than men, have been understudied in areas of CNS neuroplasticity. Our long-term goal is to understand if innate ability to rapidly up train the H-reflex is predictive of future performance-based injury among females. In this study, we primarily determined whether healthy, young females could rapidly increase the H-reflex within a single session of operant conditioning and secondarily determined if electro-physiological, humoral, cognitive, anthropometric, or anxiety biomarkers distinguished the responders from nonresponders. Eighteen females (mean age: 24) participated in the study. Overall, females showed a group main effect for up training the H-reflex (P < 0.05). Of the cohort, 10 of 18 females met the criteria for up training the H-reflex (responders). The responders showed lower levels of estradiol (P < 0.05). A multivariate stepwise regression model supported that extracellular to intracellular water ratio (ECW/ICW) and H-max/M-max ratio explained 60% of the variation in up training among females. These findings support that females can acutely upregulate the H-reflex with training and that electro-physiological and hormonal factors may be associated with the up training.NEW & NOTEWORTHY Young females who acutely increase their H-reflexes with operant conditioning had lower levels of estradiol. However, the best predictors of those who could up-train the H-reflex were baseline H-reflex excitability (H-max/M-max) and extracellular to intracellular water ratio (ECW/ICW). Future studies are warranted to understand the complex relationship between operant conditioning, human performance, and injury among active young females.


Asunto(s)
Reflejo H , Traumatismos de la Médula Espinal , Masculino , Animales , Humanos , Femenino , Adulto Joven , Adulto , Reflejo H/fisiología , Condicionamiento Operante/fisiología , Plasticidad Neuronal/fisiología , Electromiografía
2.
J Therm Biol ; 118: 103730, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37890230

RESUMEN

This study aimed to investigate whether acute passive heat stress 1) decreases muscle Maximal Voluntary Contraction (MVC); 2) increases peripheral muscle fatigue; 3) increases spinal cord excitability, and 4) increases key skeletal muscle gene signaling pathways in skeletal muscle. Examining the biological and physiological markers underlying passive heat stress will assist us in understanding the potential therapeutic benefits. MVCs, muscle fatigue, spinal cord excitability, and gene signaling were examined after control or whole body heat stress in an environmental chamber (heat; 82 °C, 10% humidity for 30 min). Heart Rate (HR), an indicator of stress response, was correlated to muscle fatigue in the heat group (R = 0.59; p < 0.05) but was not correlated to MVC, twitch potentiation, and H reflex suppression. Sixty-one genes were differentially expressed after heat (41 genes >1.5-fold induced; 20 < 0.667 fold repressed). A strong correlation emerged between the session type (control or heat) and principal components (PC1) (R = 0.82; p < 0.005). Cell Signal Transduction, Metabolism, Gene Expression and Transcription, Immune System, DNA Repair, and Metabolism of Proteins were pathway domains with the largest number of genes regulated after acute whole body heat stress. Acute whole-body heat stress may offer a physiological stimulus for people with a limited capacity to exercise.


Asunto(s)
Contracción Muscular , Fatiga Muscular , Humanos , Adulto Joven , Fatiga Muscular/fisiología , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Respuesta al Choque Térmico , Electromiografía , Contracción Isométrica/fisiología
3.
Physiol Genomics ; 52(2): 71-80, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31869286

RESUMEN

Exercise attenuates the development of chronic noncommunicable diseases (NCDs). Gene signaling pathway analysis offers an opportunity to discover if electrically induced muscle exercise regulates key pathways among people living with spinal cord injury (SCI). We examined short-term and long-term durations of electrically induced skeletal muscle exercise on complex gene signaling pathways, specific gene regulation, and epigenetic tagging of PGC1a, a major transcription factor in skeletal muscle of men with SCI. After short- or long-term electrically induced exercise training, participants underwent biopsies of the trained and untrained muscles. RNA was hybridized to an exon microarray and analyzed by a gene set enrichment analysis. We discovered that long-term exercise training regulated the Reactome gene sets for metabolism (38 gene sets), cell cycle (36 gene sets), disease (27 gene sets), gene expression and transcription (22 gene sets), organelle biogenesis (4 gene sets), cellular response to stimuli (8 gene sets), immune system (8 gene sets), vesicle-mediated transport (4 gene sets), and transport of small molecules (3 gene sets). Specific gene expression included: oxidative catabolism of glucose including PDHB (P < 0.001), PDHX (P < 0.001), MPC1 (P < 0.009), and MPC2 (P < 0.007); Oxidative phosphorylation genes including SDHA (P < 0.006), SDHB (P < 0.001), NDUFB1 (P < 0.002), NDUFA2 (P < 0.001); transcription genes including PGC1α (P < 0.030) and PRKAB2 (P < 0.011); hypertrophy gene MSTN (P < 0.001); and the myokine generating FNDC5 gene (P < 0.008). Long-term electrically induced exercise demethylated the major transcription factor PGC1a. Taken together, these findings support that long-term electrically induced muscle activity regulates key pathways associated with muscle health and systemic metabolism.


Asunto(s)
Metilación de ADN , Estimulación Eléctrica , Ejercicio Físico , Músculo Esquelético/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Transducción de Señal , Traumatismos de la Médula Espinal/metabolismo , Adulto , Biopsia , Fenómenos Electrofisiológicos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos
4.
Int J Hyperthermia ; 35(1): 644-651, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30303421

RESUMEN

AIM: Exercise modulates glucose tolerance and homeostasis in both healthy and diabetic individuals. Heat stress is a fundamental element of exercise. The acute glycemic response and alterations in glucose clearance following whole body passive heat stress in the absence of muscle activity has yet to be examined in humans. Knowledge of this relationship may prove useful, particularly in populations with compromised glucoregulation from reduced activity. PURPOSE: To determine insulin/glucose levels before and after an acute bout of heat stress in healthy, lean individuals and examine the effects of whole body heat stress (WBHS) and exercise on acute glucose tolerance in an expanded cohort. METHODS: Ten subjects (24.1 ± 0.7 years) participated in a randomized control/WBHS session (up to 30 minutes at 73 °C) with fasting glucose (FG) and insulin drawn at baseline, immediately after and 30 minutes post heat stress. In the follow-up experiment, 20 anthropometrically diverse subjects (24.6 ± 2.1 years) underwent an oral glucose tolerance test (OGTT) under the conditions above. RESULTS: FG levels rose 10% immediately following heat stress (8.6 (±5.6) mg/dl, p < .01) and returned to near baseline levels 30 minutes following WBHS. Insulin release showed its greatest increase at 30 minutes post WBHS (2.7 ± 3.5) uU/ml p < .05). WBHS resulted in a decrease in glucose uptake [AUC increased 8.2% (1430.6 ± 1957.03) mg/dl (p = .005)], particularly in nonlean individuals. CONCLUSION: WBHS modulates physiologic markers of metabolism. An acute bout of WBHS increases glucose and insulin levels in healthy individual and decreases glucose uptake in response to a glucose challenge, particularly those who are non-lean.


Asunto(s)
Ejercicio Físico/fisiología , Glucosa/metabolismo , Calor/efectos adversos , Femenino , Humanos , Masculino , Adulto Joven
5.
J Spinal Cord Med ; : 1-7, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619192

RESUMEN

CONTEXT: Skeletal muscle has traditionally been considered a "force generator": necessary for purposes of locomotion, but expendable for non-ambulators who use wheelchairs, such as people with a spinal cord injury (SCI). Active skeletal muscle plays an indispensable role in regulating systemic metabolic functions, even in people with paralysis, but because of severe osteoporosis, high tetanic muscle forces induced with high frequency electrical stimulation may be risky for some individuals. The purpose of this study was to compare the physiologic muscle properties incurred by two low force/low frequency repetitive stimulation protocols (1 and 3 Hz); and, to assess the acceptability of each protocol among people with SCI. METHODS: Ten individuals with chronic SCI (12.9 years) and 11 individuals without SCI (NonSCI) participated in the study. Participants received either 1 or 3 Hz stimulation to the quadriceps muscle on Day 1, then the converse on Day 2. Each session consisted of 1000 stimulus pulses. RESULTS: The initial and maximum forces were similar for the 1 and 3 Hz frequencies. The fatigue index (FI) for SCI and NonSCI groups were lower (P < 0.007) for 3 Hz than for 1 Hz (0.34 ± 0.17 versus 0.65 ± 0.16 and 0.72 ± 0.14 versus 0.87 ± 0.07, respectively). CONCLUSION: The 3 Hz stimulation offered the greatest physiological challenge and was perceived as more acceptable for long term use among people with SCI.

6.
J Funct Morphol Kinesiol ; 8(3)2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37606407

RESUMEN

Exercise confers a multitude of benefits with limited adverse side effects, making it a powerful "medication" for a plethora of diseases. In people living with uncontrolled glucose levels, exercise can be an effective "medication" to assist in the management of hyperglycemia. We sought to survey healthcare providers (physicians and physical therapists) to determine the current state of exercise recommendation for people with glucose control issues. Healthcare providers were surveyed from six academic medical centers in the Midwest to determine the recommended exercise parameters (type, frequency, duration, intensity, and timing) for patients with glucose control issues. Data from 209 practitioners who completed the survey were used for analysis. Chi-square tests were used to determine differences in exercise recommendations between physical therapists (PTs) and physicians (MD/DOs). PTs and MD/DOs recommended similar exercise parameters. Of all respondents, 78.9% recommended exercise to patients with glucose control issues. Respondents who considered themselves to be active exercisers were more likely to recommend exercise than those who were not exercisers. Only 6.1% of all respondents recommended post-meal exercise. Healthcare providers overwhelmingly recommended exercise for people with glucose control issues, but the "timing" is not congruent with best practice recommendations.

7.
J Funct Morphol Kinesiol ; 8(3)2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37606417

RESUMEN

After spinal cord injury (SCI), multiple adaptations occur that influence metabolic health and life quality. Prolonged sitting and inactivity predispose people with SCI to body composition changes, such as increased visceral adipose tissue (VAT) thickness, which is often associated with impaired glucose tolerance. Our goal is to understand whether VAT is an index of leanness, and, secondarily, whether mobility methods influence glucose tolerance for people living with SCI. A total of 15 people with SCI and 20 people without SCI had fasting oral glucose tolerance tests (OGTT) and VAT thickness (leanness) measured during a single session. Glucose was 51% and 67% greater for individuals with SCI relative to those without SCI after 60 and 120 min of an OGTT (p < 0.001). Glucose area under the curve (AUC) was 28%, 34%, and 60% higher for non-lean people with SCI than lean people with SCI and non-lean and lean people without SCI, respectively (p = 0.05, p = 0.009, p < 0.001). VAT was associated with glucose AUC (R2 = 0.23, p = 0.004). Taken together, these findings suggest that leanness, as estimated from VAT, may be an important consideration when developing rehabilitation programs to influence metabolism among people with SCI.

8.
J Funct Morphol Kinesiol ; 7(4)2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36278750

RESUMEN

Regular exercise involves daily muscle contractions helping metabolize up to 70% of daily ingested glucose. Skeletal muscle increases glucose uptake through two distinct pathways: insulin signaling pathway and muscle contraction mediated AMPK pathway. People with paralysis are unable to contract their muscles which atrophy, transform into insulin resistant glycolytic muscle, and develop osteoporosis. Our goal is to determine if low force electrically induced exercise (LFE) will modulate the post prandial insulin and glucose response in people with and without spinal cord injury (SCI). 18 people with SCI and 23 without SCI (Non-SCI) participated in an assessment of metabolic biomarkers during passive sitting (CTL) and a bout of LFE delivered to the quadriceps/hamstring muscle groups after a glucose challenge. Baseline fasting insulin (p = 0.003) and lactate (p = 0.033) levels were higher in people with SCI, but glucose levels (p = 0.888) were similar compared to the non-SCI population. After 1-h of muscle contractions using LFE, heart rate increased (p < 0.001), capillary glucose decreased (p = 0.004), insulin decreased (p < 0.001), and lactate increased (p = 0.001) in the SCI population. These findings support that LFE attenuates certain metabolic blood biomarkers during a glucose challenge and may offer a lifestyle strategy to regulate metabolic responses after eating among people with SCI.

9.
Phys Ther ; 102(1)2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34718779

RESUMEN

OBJECTIVE: Physical therapists develop patient-centered exercise prescriptions to help overcome the physical, emotional, psychosocial, and environmental stressors that undermine a person's health. Optimally prescribing muscle activity for people with disability, such as a spinal cord injury, is challenging because of their loss of volitional movement control and the deterioration of their underlying skeletal systems. This report summarizes spinal cord injury-specific factors that should be considered in patient-centered, precision prescription of muscle activity for people with spinal cord injury. This report also presents a muscle genomic and epigenomic analysis to examine the regulation of the proliferator-activated receptor γ coactivator 1α (PGC-1α) (oxidative) and myostatin (hypertrophy) signaling pathways in skeletal muscle during low-frequency (lower-force) electrically induced exercise versus higher-frequency (higher-force) electrically induced exercise under constant muscle recruitment (intensity). METHODS: Seventeen people with spinal cord injury participated in 1 or more unilateral electrically induced exercise sessions using a lower-force (1-, 3-, or 5-Hz) or higher-force (20-Hz) protocol. Three hours after the exercise session, percutaneous muscle biopsies were performed on exercised and nonexercised muscles for genomic and epigenomic analysis. RESULTS: We found that low-frequency (low-force) electrically induced exercise significantly increased the expression of PGC-1α and decreased the expression of myostatin, consistent with the expression changes observed with high-frequency (higher-force) electrically induced exercise. Further, we found that low-frequency (lower-force) electrically induced exercise significantly demethylated, or epigenetically promoted, the PGC-1α signaling pathway. A global epigenetic analysis showed that >70 pathways were regulated with low-frequency (lower-force) electrically induced exercise. CONCLUSION: These novel results support the notion that low-frequency (low-force) electrically induced exercise may offer a more precise rehabilitation strategy for people with chronic paralysis and severe osteoporosis. Future clinical trials are warranted to explore whether low-frequency (lower-force) electrically induced exercise training affects the overall health of people with chronic spinal cord injury.


Asunto(s)
Terapia por Estimulación Eléctrica/métodos , Terapia por Ejercicio/métodos , Atrofia Muscular/genética , Atrofia Muscular/rehabilitación , Medicina de Precisión/métodos , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/rehabilitación , Adulto , Epigenómica , Genómica , Humanos , Persona de Mediana Edad
10.
Neurosci Lett ; 647: 129-132, 2017 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-28315725

RESUMEN

H-reflex paired-pulse depression is gradually lost within the first year post-SCI, a process believed to reflect reorganization of segmental interneurons after the loss of normal descending (cortical) inhibition. This reorganization co-varies in time with the development of involuntary spasms and spasticity. The purpose of this study is to determine whether long-term vibration training may initiate the return of H-reflex paired-pulse depression in individuals with chronic, complete SCI. Five men with SCI received twice-weekly vibration training (30Hz, 0.6g) to one lower limb while seated in a wheelchair. The contra-lateral limb served as a within-subject control. Paired-pulse H-reflexes were obtained before, during, and after a session of vibration. Untrained limb H-reflex depression values were comparable to chronic SCI values from previous reports. In contrast, the trained limbs of all 5 participants showed depression values that were within the range of previously-reported Acute SCI and Non-SCI H-reflex depression. The average difference between limbs was 34.98% (p=0.016). This evidence for the return of H-reflex depression suggests that even for people with long-standing SCI, plasticity persists in segmental reflex pathways. The spinal networks involved with the clinical manifestation of spasticity may thus retain adaptive plasticity after long-term SCI. The results of this study indicate that vibration training may hold promise as an anti-spasticity rehabilitation intervention.


Asunto(s)
Reflejo H , Plasticidad Neuronal , Traumatismos de la Médula Espinal/rehabilitación , Vibración , Adulto , Enfermedad Crónica , Humanos , Pierna/inervación , Pierna/fisiopatología , Masculino , Persona de Mediana Edad , Músculo Esquelético/inervación , Músculo Esquelético/fisiopatología , Traumatismos de la Médula Espinal/fisiopatología , Adulto Joven
11.
Gait Posture ; 52: 345-353, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28043056

RESUMEN

We developed a method to investigate feed-forward and feedback movement control during a weight bearing visuomotor knee tracking task. We hypothesized that a systematic increase in speed and resistance would show a linear decrease in movement accuracy, while unexpected perturbations would induce a velocity-dependent decrease in movement accuracy. We determined the effects of manipulating the speed, resistance, and unexpected events on error during a functional weight bearing task. Our long term objective is to benchmark neuromuscular control performance across various groups based on age, injury, disease, rehabilitation status, and/or training. Twenty-six healthy adults between the ages of 19-45 participated in this study. The study involved a single session using a custom designed apparatus to perform a single limb weight bearing task under nine testing conditions: three movement speeds (0.2, 0.4, and 0.6Hz) in combination with three levels of brake resistance (5%, 10%, and 15% of individual's body weight). Individuals were to perform the task according to a target with a fixed trajectory across all speeds, corresponding to a∼0 (extension) to 30° (flexion) of knee motion. An increase in error occurred with speed (p<0.0001, effect size (eta2): η2=0.50) and resistance (p<0.0001, η2=0.01). Likewise, during unexpected perturbations, the ratio of perturbed/non-perturbed error increased with each increment in velocity (p<0.0014, η2=0.08), and resistance (p<0.0001, η2=0.11). The hierarchical framework of these measurements offers a standardized functional weight bearing strategy to assess impaired neuro-muscular control and/or test the efficacy of therapeutic rehabilitation interventions designed to influence neuromuscular control of the knee.


Asunto(s)
Articulación de la Rodilla/fisiología , Soporte de Peso , Aceleración , Adulto , Electromiografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Movimiento , Rango del Movimiento Articular , Valores de Referencia , Análisis y Desempeño de Tareas , Adulto Joven
12.
PLoS One ; 11(8): e0160594, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27486743

RESUMEN

UNLABELLED: Skeletal muscle exercise regulates several important metabolic genes in humans. We know little about the effects of environmental stress (heat) and mechanical stress (vibration) on skeletal muscle. Passive mechanical stress or systemic heat stress are often used in combination with many active exercise programs. We designed a method to deliver a vibration stress and systemic heat stress to compare the effects with active skeletal muscle contraction. PURPOSE: The purpose of this study is to examine whether active mechanical stress (muscle contraction), passive mechanical stress (vibration), or systemic whole body heat stress regulates key gene signatures associated with muscle metabolism, hypertrophy/atrophy, and inflammation/repair. METHODS: Eleven subjects, six able-bodied and five with chronic spinal cord injury (SCI) participated in the study. The six able-bodied subjects sat in a heat stress chamber for 30 minutes. Five subjects with SCI received a single dose of limb-segment vibration or a dose of repetitive electrically induced muscle contractions. Three hours after the completion of each stress, we performed a muscle biopsy (vastus lateralis or soleus) to analyze mRNA gene expression. RESULTS: We discovered repetitive active muscle contractions up regulated metabolic transcription factors NR4A3 (12.45 fold), PGC-1α (5.46 fold), and ABRA (5.98 fold); and repressed MSTN (0.56 fold). Heat stress repressed PGC-1α (0.74 fold change; p < 0.05); while vibration induced FOXK2 (2.36 fold change; p < 0.05). Vibration similarly caused a down regulation of MSTN (0.74 fold change; p < 0.05), but to a lesser extent than active muscle contraction. Vibration induced FOXK2 (p < 0.05) while heat stress repressed PGC-1α (0.74 fold) and ANKRD1 genes (0.51 fold; p < 0.05). CONCLUSION: These findings support a distinct gene regulation in response to heat stress, vibration, and muscle contractions. Understanding these responses may assist in developing regenerative rehabilitation interventions to improve muscle cell development, growth, and repair.


Asunto(s)
Respuesta al Choque Térmico/genética , Contracción Muscular/genética , Músculo Esquelético/metabolismo , Estrés Mecánico , Vibración , Adulto , Estudios de Casos y Controles , Ejercicio Físico/fisiología , Regulación de la Expresión Génica , Calor , Humanos , Masculino , Músculo Esquelético/patología , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Estrés Fisiológico/genética , Torque , Adulto Joven
13.
J Clin Neurosci ; 24: 117-21, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26461908

RESUMEN

Cervical spondylotic myelopathy (CSM) is the leading cause of spinal cord related disability in the elderly. It results from degenerative narrowing of the spinal canal, which causes spinal cord compression. This leads to gait instability, loss of dexterity, weakness, numbness and urinary dysfunction. There has been indirect data that implicates a genetic component to CSM. Such a finding may contribute to the variety in presentation and outcome in this patient population. The Val66Met polymorphism, a mutation in the brain derived neurotrophic factor (BDNF) gene, has been implicated in a number of brain and psychological conditions, and here we investigate its role in CSM. Ten subjects diagnosed with CSM were enrolled in this prospective study. Baseline clinical evaluation using the modified Japanese Orthopaedic Association (mJOA) scale, Nurick and 36-Item Short Form Health Survey (SF-36) were collected. Each subject underwent objective testing with gait kinematics, as well as hand functioning using the Purdue Peg Board. Blood samples were analyzed for the BDNF Val66Met mutation. The prevalence of the Val66Met mutation in this study was 60% amongst CSM patients compared to 32% in the general population. Individuals with abnormal Met allele had worse baseline mJOA and Nurick scores. Moreover, baseline gait kinematics and hand functioning testing were worse compared to their wild type counterpart. BDNF Val66Met mutation has a higher prevalence in CSM compared to the general population. Those with BDNF mutation have a worse clinical presentation compared to the wild type counterpart. These findings suggest implication of the BDNF mutation in the development and severity of CSM.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple/genética , Enfermedades de la Médula Espinal/genética , Espondilosis/genética , Anciano , Vértebras Cervicales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Compresión de la Médula Espinal/etiología , Enfermedades de la Médula Espinal/etiología , Espondilosis/complicaciones
14.
Neurosurgery ; 79(5): 701-707, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27759677

RESUMEN

BACKGROUND: Cervical spondylotic myelopathy (CSM) is a common disease of aging that leads to gait instability resulting from loss of leg sensory and motor functions. The results of surgical intervention have been studied using a variety of methods, but no test has been reported that objectively measures integrative leg motor sensory functions in CSM patients. OBJECTIVE: To determine the feasibility of using a novel single leg squat (SLS) test to measure integrative motor sensory functions in patients with CSM before and after surgery. METHODS: Fifteen patients with CSM were enrolled in this prospective study. Clinical data and scores from standard outcomes questionnaires were obtained before and after surgery. Patients also participated in experimental test protocols consisting of standard kinematic gait testing, the Purdue pegboard test, and the novel SLS test. RESULTS: The SLS test protocol was well tolerated by CSM patients and generated objective performance data over short test periods. In patients who participated in postoperative testing, the group measures of mean SLS errors decreased following surgery. Gait velocity measures followed a similar pattern of group improvement postoperatively. Practical barriers to implementing this extensive battery of tests resulted in subject attrition over time. Compared with kinematic gait testing, the SLS protocol required less space and could be effectively implemented more efficiently. CONCLUSIONS: The SLS test provides a practical means of obtaining objective measures of leg motor sensory functions in patients with CSM. Additional testing with a larger cohort of patients is required to use SLS data to rigorously examine group treatment effects. ABBREVIATIONS: BW, body weightCSM, cervical spondylotic myelopathymJOA, modified Japanese Orthopedic AssociationSLS, single leg squat.


Asunto(s)
Vértebras Cervicales/cirugía , Descompresión Quirúrgica , Marcha , Laminectomía , Desempeño Psicomotor , Compresión de la Médula Espinal/cirugía , Fusión Vertebral , Espondilosis/cirugía , Anciano , Fenómenos Biomecánicos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Procedimientos Neuroquirúrgicos , Estudios Prospectivos , Compresión de la Médula Espinal/etiología , Compresión de la Médula Espinal/fisiopatología , Espondilosis/complicaciones , Espondilosis/fisiopatología , Encuestas y Cuestionarios , Resultado del Tratamiento
15.
PLoS One ; 9(12): e115791, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25531450

RESUMEN

Paralysis after a spinal cord injury (SCI) induces physiological adaptations that compromise the musculoskeletal and metabolic systems. Unlike non-SCI individuals, people with spinal cord injury experience minimal muscle activity which compromises optimal glucose utilization and metabolic control. Acute or chronic muscle activity, induced through electrical stimulation, may regulate key genes that enhance oxidative metabolism in paralyzed muscle. We investigated the short and long term effects of electrically induced exercise on mRNA expression of human paralyzed muscle. We developed an exercise dose that activated the muscle for only 0.6% of the day. The short term effects were assessed 3 hours after a single dose of exercise, while the long term effects were assessed after training 5 days per week for at least one year (adherence 81%). We found a single dose of exercise regulated 117 biological pathways as compared to 35 pathways after one year of training. A single dose of electrical stimulation increased the mRNA expression of transcriptional, translational, and enzyme regulators of metabolism important to shift muscle toward an oxidative phenotype (PGC-1α, NR4A3, IFRD1, ABRA, PDK4). However, chronic training increased the mRNA expression of specific metabolic pathway genes (BRP44, BRP44L, SDHB, ACADVL), mitochondrial fission and fusion genes (MFF, MFN1, MFN2), and slow muscle fiber genes (MYH6, MYH7, MYL3, MYL2). These findings support that a dose of electrical stimulation (∼10 minutes/day) regulates metabolic gene signaling pathways in human paralyzed muscle. Regulating these pathways early after SCI may contribute to reducing diabetes in people with longstanding paralysis from SCI.


Asunto(s)
Biomarcadores/metabolismo , Terapia por Estimulación Eléctrica , Músculo Esquelético/patología , Parálisis/complicaciones , Parálisis/genética , Traumatismos de la Médula Espinal/etiología , Traumatismos de la Médula Espinal/rehabilitación , Adaptación Fisiológica/fisiología , Adulto , Ejercicio Físico/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Músculo Esquelético/metabolismo , Fenómenos Fisiológicos Musculoesqueléticos , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Traumatismos de la Médula Espinal/patología
16.
Physiol Rep ; 2(2): e00248, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24744911

RESUMEN

Spinal cord injury (SCI) is associated with muscle atrophy, transformation of muscle fibers to a fast fatigable phenotype, metabolic inflexibility (diabetes), and neurogenic osteoporosis. Electrical stimulation of paralyzed muscle may mitigate muscle metabolic abnormalities after SCI, but there is a risk for a fracture to the osteoporotic skeletal system. The goal of this study was to determine if low force stimulation (3 Hz) causes fatigue of chronically paralyzed muscle consistent with selected muscle gene expression profiles. We tested 29 subjects, nine with a SCI and 20 without and SCI, during low force fatigue protocol. Three SCI and three non-SCI subjects were muscle biopsied for gene and protein expression analysis. The fatigue index (FI) was 0.21 ± 0.27 and 0.91 ± 0.01 for the SCI and non-SCI groups, respectively, supporting that the low force protocol physiologically fatigued the chronically paralyzed muscle. The post fatigue potentiation index (PI) for the SCI group was increased to 1.60 ± 0.06 (P <0.001), while the non-SCI group was 1.26 ± 0.02 supporting that calcium handling was compromised with the low force stimulation. The mRNA expression from genes that regulate atrophy and fast properties (MSTN, ANKRD1, MYH8, and MYCBP2) was up regulated, while genes that regulate oxidative and slow muscle properties (MYL3, SDHB, PDK2, and RyR1) were repressed in the chronic SCI muscle. MSTN, ANKRD1, MYH8, MYCBP2 gene expression was also repressed 3 h after the low force stimulation protocol. Taken together, these findings support that a low force single twitch activation protocol induces paralyzed muscle fatigue and subsequent gene regulation. These findings suggest that training with a low force protocol may elicit skeletal muscle adaptations in people with SCI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA